
On the Inadequacy of Open-Source Application Logs for Digital
Forensics

Afiqah M. Azahari1, Davide Balzarottia

aEurecom, Sophia Antipolis, France

Abstract

This study explores the challenges with utilizing application logs for incident response or forensic

analysis. Application logs have the potential to significantly enhance security analysis as sometimes

they provide information regarding user actions, error messages, and performance metrics of the

application. Although these logs can offer vital information about user activities, errors, and

application performance, their use for security needs better understanding. We looked at the

current logging implementation of 60 open-source applications. We checked the logs to see if they

could help with five key security tasks: making timelines, linking events, separating different actions,

spotting misuse, and detecting attacks. By examining source code, extracting log statements, and

evaluating them for security relevance, we found many logs lacked essential elements. Specifically,

29 applications omitted timestamps, crucial for identifying the timing of actions. Furthermore, logs

frequently missed unique identifiers (UIDs) for event correlation, with 23 not noting UIDs for new

activities. Inconsistent logging of user activities and an absence of logs detailing successful attacks

indicate current application logs need significant enhancements to be effective for security checks.

The findings of our research suggest that current application logs are inadequately equipped for in-

depth security analysis. Enhancements are imperative for their optimal utility. This investigation

underscores the inherent challenges in leveraging logs for security and emphasizes the pressing need

for refining logging methodologies.

Keywords: Logs, application, forensic, security

Email addresses: afiqah.azahari@eurecom.fr (Afiqah M. Azahari), davide.balzarotti@eurecom.fr (Davide
Balzarotti)

Preprint submitted to Forensic Science International: Digital Investigation April 30, 2024

1. Introduction

In the evolving digital ecosystem, the significance of application logs for ensuring robust com-

puter systems cannot be overstated. In particular, while their main purpose remains troubleshoot-

ing, their use for security is rapidly gaining importance. For instance, they can play a key role in

flagging unusual or unauthorized activities and they can provide valuable insights into the func-5

tioning of an application, allowing administrators to detect unauthorized access attempts or system

component errors. Consistent examination of application logs also enables the timely detection and

mitigation of security threats. Extensive research has been conducted by the software engineering

community to improve application logs, focusing on performance monitoring, software failure pin-

pointing, and on enhancing the logging process during software development [1, 2, 3, 4]. Researchers10

have also analyzed log patterns to propose advancements and automation in logging methodologies,

aiming to enhance the efficiency and effectiveness of logging practices in different application types.

From a security perspective, existing literature has mainly focused on proposing automated

suggestions to refine application logging techniques [5, 6, 7, 6]. However, these studies provide

recommendations suitable for only a narrow range of attacks, and often advocate techniques that15

are applicable to a specific subset of application types. Moreover, while the broader utility of

application logs in areas like monitoring, troubleshooting, and evaluating security breaches were

acknowledged, there is a lack of comprehensive research on their use for detailed forensic analysis

in various user applications. Our research aims to address this gap by conducting a thorough

examination of the challenges and limitations associated with utilizing application logs for security20

purposes. We highlight specific areas that require improvement to enhance their effectiveness in

security-related applications and discuss inadequacies or inconsistencies that could impede their

efficacy in security-related use.

Our first objective was to propose a taxonomy of the possible uses of application logs for forensic

purposes, and to then study which information logs need to contain to perform such actions. We25

then embarked on a comprehensive study of 60 different open source applications. We studied

their source code, extracted relevant log lines, and assessed their current implementation according

to our requirements. Our primary goal was two-fold: to identify potential forensic tasks that

can be performed using these application logs and to propose guidelines emphasizing the essential

parameters these logs should capture.30

The results of our experiment helped us uncover significant insights. In particular, we found that

2

the majority of logs from the studied applications were found to be inadequate when evaluated for

incident response or forensic analysis. This highlights the need for more effective logging practices

for security and forensic purposes in user applications. By addressing these findings, our research

aims to contribute to the development of enhanced logging systems, ultimately improving the35

efficacy of security measures in various domains.

In summary, this paper makes the following contributions:

� We characterized five common forensic tasks, including timeline activity, event correlation,

execution partitioning, misuse detection, and attack detection, and emphasized their impor-

tance in the context of security and application logs.40

� We identified parameters that application logs should embody, such as timestamps, unique

identifiers for event correlation and execution partitioning, documentation of user actions,

and warning related to the processing of unusual or malformed data. These parameters are

crucial for incident response and forensic analysis.

� We conducted a detailed manual assessment on 60 open-source applications to understand45

current practices of application logs for forensic purposes and to identify potential challenges.

� Based on our analysis, we describe existing challenges in using application logs for security

purposes, including insufficient timestamp data in 29 applications, a high percentage of text-

only log events in more than half of the applications, inconsistent logging of specific user

actions, and inadequate logging of exceptions in 35 applications.50

2. Background

The term log originally referred to the process of keeping a record of the progress of a ship,

an operation that was performed by using a wooden chip log attached to a knotted rope [8]. In

the context of computing and information technology, the term is used to describe the recording of

events that capture the usage, the activity, and the operation of a computer system.55

2.1. Terminology

Logs are routinely used to record information about the runtime operations of operating sys-

tems, servers, applications, and network devices. This data is usually broken down in a sequence

3

of individual entries, each reporting information on a particular event that occurred within the

source that originates the log. For example, operating system logs capture a range of events from60

startup messages and system modifications to unexpected shutdowns. In contrast, application logs

provide a comprehensive overview of activities, which encompass a broader scope of actions and

user interactions within the application. These logs might include detailed records such as autho-

rization processes, descriptions of actions taken, identifications of users involved, explanations for

any failures, and records of activities between the application and its users, as well as insights into65

the internal dynamics of the application.

Logs can be stored in various formats and locations, such as files, databases, or cloud-based

storage systems, and serve as a primary source of information that is essential for detecting and

troubleshooting problems but also for verifying the operational performance and efficiency of a

system.70

Logs also play a crucial role for security, both as a way to detect attacks or compromise and

as a way to investigate them in a post-mortem scenario.

2.2. Standards and Guidelines

Various standards and guidelines exist to guide the developers and organizations to design and

streamline their logging process. For instance, ISO 27002 provides essential logging requirements,75

such as the fact that audit logs should be generated and stored for a certain period of time to assist

future analysis. At the same time, ISO provides very few details on how such requirements needs

to be implemented.

The Control Objectives for Information and Related Technologies (COBIT) framework offers

additional information about logging management, including logging configuration, changes, and80

backup processes. Nevertheless, COBIT provides little details regarding the requirement of logs

for security purposes. Another industry standard that specifies the requirement to log is PCI. In

fact, PCI v3.2.1 provides much more detailed logging guidance that any relevant applications could

apply. These include logs’ details and properties, the type of events to logs, the importance of

time synchronization, important security requirement, logs locations, log retention, and the need85

for a routine review [9]. While the PCI standard provides a complex methodology, it is specifically

designed for software applications, which require different logging provisions and practices.

Additionally, many technical blog posts provide logging recommendations [10, 11, 12, 13, 14,

4

15, 16, 17]. Industry players, support engineers, the development community, and security experts

often discuss logging and share their opinions and perspectives on proper logging techniques. These90

posts provide tips, including what to log, what ‘not’ to log, which verbosity level and logging format

to use, and which log retention approach to adopt.

One major limitation is that the vast majority of log standards and guidelines focus their

requirements and recommendations on logs for debugging rather than for security. In 2010 Chuvakin

and Peterson [18] compared the two classes (debugging vs security) and discussed how the second95

should be intended specifically for security and audit personnel. Security-relevant logs should always

be available and contain messages reporting information about attacks, activities, and faults. The

authors also defined what to log and the retention of log files.

Moreover, Brouwer and Mertens [19] listed five categories of logging requirement that are relevant

for forensic investigation. These requirements include logs retention, correlation, content, integrity100

and consideration. The authors mention that logs for security should contain information on “who

did what, where, when, how, and the results”. However, these suggestions and recommendations

were based on the authors personal experience, without any justification or experiment to support

the discussions.

Finally, it is important to mention that the Cyber-Investigation Analysis Standard Expression105

(CASE) introduces a significant effort to standardize the representation of forensic data, thus sim-

plifying the investigation and analysis process through enhanced provenance and traceability [20].

CASE considerably improves the existing standards and guidelines for logging in security and

forensic contexts. By breaking down data silos and enhancing tool interoperability, CASE sup-

ports the automated normalization, combination, and correlation of data from diverse sources. Its110

community-driven API eases integration into various tools, allowing developers to tailor CASE to fit

their specific data structures and formats [21, 22]. This flexibility in mapping and converting data

to comply with the CASE standard makes it a valuable asset in advancing digital forensic investiga-

tions and facilitating collaboration among cyber-investigators. However, integrating CASE without

properly understanding the essential information required for forensic logging may lead to inade-115

quate evidence collection. Additionally, the use of CASE to merge multiple data sources, especially

those lacking comprehensive data, might backfire and actually impede effective evidence extraction.

Thus, while CASE presents a comprehensive framework for integrating diverse data sources, the

accuracy and completeness of the input data remain critical for effective forensic evidence gathering

5

and analysis.120

2.3. Related Work

Previous studies on logging in software applications tackled the problems of where-to-log, what-

to-log, and how-to-log. Multiple studies ventured into the problem by trying to understand how

developers log in terms of their logs level, log descriptions, logs history, and logs variable.

Several papers [23, 24] performed studies to understand the placement of logs in existing ap-125

plications, with the goal of proposing automated logging placement techniques that should help

programmers during the development phase. For instance, Cinque et al. [25] performed a prelimi-

nary study on the log placement on eight software platforms to understand the limitation of current

logging mechanisms. Yao et al. [26] suggested a framework to improve the location of logging for

performance monitoring. Zhu et al. [27] proposed a framework to help developers make informed130

logging decisions on where to log, therefore reducing their logging efforts. Ding et al. [28] suggested

a low-cost logging framework that can reduce overhead while maintaining a high effectiveness.

Multiple studies have been done to improve the implementation of log levels, log descriptions,

and log variables. Li et al. [29] analyzed the development history of four open-source code projects,

then created a model to automatically suggest the most appropriate level for each newly-added135

logging statement. He et al. [30] studied the purpose of logging descriptions of 10 Java projects

and seven C# projects and created a tool that generated automatic logs description. Moreover, as

logging statements usually prints one or more variables to record vital system status, Liu et al. [31]

proposed an approach to recommend logging variables. Researchers [32] [33] have also studied the

history and evolution of logging statements to improve current implementations by automatically140

detecting new problematic logging codes and anti-patterns in logging, and then report the result

to the developers for further improvement. Replication studies have been made by Chen et al. [34]

to assess whether the finding from [32] would apply to Java projects part of the Apache Software

Foundations. The authors found that all assessed Java projects contain logging code that is actively

maintained. Nevertheless, in contrast with the original study, they also found that any bug reports145

containing log messages take longer to resolve compared to bug reports without. Kabinna et al. [35]

also studied the history of logging code. In this case, instead of looking for problematic logging

statements, the authors examined whether the introduced or long-lived logging statements are likely

to change.

6

User studies also exist in this area. For instance, Pecchia et al. [36] tried to understand how150

developer logs, why they log and how event logging is implemented in the industry. To gain broad

insight from programming practices, logging objectives and issues impacting log analysis, they

combined source code analysis on 2.3 million log entries and obtained direct feedback from the

development team. In conclusion, they find that the process of logging strongly relies on human

expertise.155

Among the existing studies, some have also focused on logging for security. King et al. [37]

performed a study to evaluate logging practices for security incidents detection on an open-source

health care software. The authors performed a black box test and evaluated the collected logs based

on the Standard Specification for Audit and Disclosure Logs for Use in Health Information Systems.

They also developed a forensic-ability metric to measure the coverage of mandatory log events for160

user activity logs [5]. To do that, the authors manually identified all pairs of verbs and objects

that act upon user activity of the studied software to develop the mandatory log events. While this

was an interesting experiment, the finding were very specific for this domain and this particular

application, and the approach did not suggest how logging should be done to capture user activity.

In 2019, Rivera-Ortiz and Pasquale presented a preliminary idea to automate forensic-ready software165

system development. They developed a framework that allows security engineers to replay potential

security incidents [7] and then provided a semi-automated approach to automatically inject logging

statements based on the replay framework [6]. However, the solution was limited to a specific type

of system (JAVA apps built on top of a MySQL database).

In conclusion, despite the numerous studies that have been conducted on the topic of logging,170

to the best of our knowledge no research has yet been conducted to specifically investigate the state

of security- and forensic-relevant logs across many types of user-space applications.

3. Forensic Use of Application Logs

Application logs can provide a broad range of information that can be used as part of an incident

response or forensic investigations. However, both the number and the type of tasks that an analyst175

can perform depend on the available data.

In this section we group common forensic analysis tasks in five main categories:

1. Activity Timelines.

7

Timelines play a very important role in digital forensics, as they allow an investigator to easily

aggregate and navigate the sequence of events that took place on a computer system. For180

instance, a timeline can be used to identify the cause of an incident by locating co-occurring

events (such as an external drive plugged in just before a document was accessed) or by

identifying patterns of sequential behaviors. The ability to restrict the analysis to particular

time ranges, to pinpoint relevant entries, and to put them in context with respect to all other

pieces of evidence collected in the target system makes timelines an invaluable tool.185

In order to be integrated into a timeline, log entries must include a well-identified timestamp.

Their absence make it difficult or impossible to synchronize the logs with other data sources

and correlate events.

In addition, the application needs to log relevant events that capture the user behavior (these

events differ from one type of application to another, and we will discuss them in more details190

in Section 4).

2. Events Correlation.

The ability to correlate events from different sources is paramount in a forensic investigation.

For instance, a broad range of information can be extracted from emails, server logs, network195

appliances, antivirus products, and operating systems. All these sources can be useful in

isolation, but the ability to ‘connect the dots’ by linking together events across the entire

target system, or across different systems, can help an investigator to better understand

what is relevant to the case and what parts of the system have been compromised. For

instance, a succesful password bruteforce against a dormant employee account can be difficult200

to investigate if the application does not log the username associated to each attempt, or the

network address from which the connections originated.

The representation of unique characteristics in log message plays a crucial role in event cor-

relation. In particular, the presence of unique identifiers (such as URLs, user names and IDs,

network addresses, domain names, and complete file and directory paths) helps to reconstruct205

complex timelines of events and to transform raw logs into coherent event sequences, such

as workflows. For instance, a recent study by Li et al. [3] leverages commonly available IDs

within logs to tackle challenges associated with intermixed event sequences.

8

Moreover, unique events in logs enrich the analysis by tracing activity sequences within the

application, providing additional context. Each unique event acts as a distinct marker or210

footprint, allowing the tracing of specific actions or occurrences.

The unique values provided by dynamic variables in logs aid in differentiating between normal

and anomalous system behavior. Developers have observed that various categories of these

dynamic variables capture crucial information, enhancing log analysis. Thus, these unique

identifiers in logs can be harnessed to correlate events and identify system components that215

may require in-depth scrutiny.

3. Execution Partitioning.

Audit logs are among the most precise and fine-grained source of information available to

an investigator. When enabled, in combination with execution and application logs, they

allow tracking of each system event’s complex dependencies using data provenance graphs220

[38]. However, the presence of long-running processes often undermine the effectiveness of the

analysis by introducing the provenance graph a large numbers of irrelevant or erroneous causal

dependencies. For instance, a new file created by a browser would depend on all URLs that

were ever opened by the same process in the past. This dependency explosion is a well-known

problem in digital forensics, and over the years researchers have proposed several mitigations225

based on the idea of execution unit partitioning [39, 40, 41]. In a nutshell, partitioning consists

in breaking down audit log events in small segments, based on the presence of particular

application events. For instance, whenever an application closes a document and opens a new

one, causal dependencies from the content of the former document should not be propagated

to the latter.230

To support partitioning, a user application needs to generate a recognizable log entry in cor-

respondence to a unit boundary (e.g., when serving a new user requests or processing a new

document). This idea was recently described by Yu et al. [42] who in 2021 analyzed 32 Linux

applications and found that 1) the vast majority were long-running and 2) that all of them

had log entries that could be used for the purpose of execution partitioning.235

4. Misuses detection.

With this term we refer to the ability of an analyst to use application logs to identify unau-

9

thorized behaviors, typically associated to insider threats or to attackers that already gained

access to the system. For instance, a legitimate user can try to misuse an application to240

perform lateral movements inside the network, to impersonate another user, or to gain access

to sensitive information.

In order to support misuse detection an application needs to log any operation that affect

the state of the system (such as change of privileges or service configurations). In addition

logs should report operations on sensitive data as well as any action which failed – or which245

was denied – based on insufficient user permissions. A typical example is provided by the

sudo setuid application, which logs any failed attempt to execute privileged commands. This

information can serve as a way to support future investigations, but also as an effective way

to deter users against poking around and trying to guess passwords.

250

5. Attack detection.

After an attack, it is crucial for an investigator to be able to retrieve the attack vector, the

source of the attack, and all actions that the attacker performed on the system. Security

logs from both network and host intrusion detection systems are designed specifically for this

purpose but they often lack the necessary visibility into each application state. For instance,255

they may be able to detect a malicious file created in the /tmp/ directory but they might

fail to provide information on which process created the file and, more importantly, which

malicious input caused the process to misbehave.

In the lack of audit logs, application logs could help to cover this blind spot by providing

information about any unusual, suspicious, or malformed piece of data the application en-260

counters. For instance, exceptions due to unexpected behaviors or triggered by malformed

data and input that fails validation routines should be reported in the logs, together with

enough information to identify the source of the data and/or its correspondent user request.

The aforementioned five categories cover many different uses of application logs for forensics and265

incident response. Each category introduces specific requirements (e.g., the presence of timestamps

and unique object identifiers) and guidelines for developers (e.g., the need to log exceptions and

malformed or invalid inputs).

10

An orthogonal dimension, which crosses all possible use cases, is related to the availability and

integrity of log files. In practice, application logs are often written to multiple locations, including270

remote servers, consoles, files, and databases. Some applications print relevant error information

only to the standard error, making them difficult to collect and store for later use. Log availability

also need to consider other log properties such as log rotation, log archival, log retention period,

and security properties such as access privileges or the use of append-only storage. Centralized log

daemons simplify this procedure but they are typically adopted only to manage system services275

and servers, leaving other userspace applications to their own custom log management.

Creating a comprehensive list of user actions that an application should log to support security

and forensic investigations is very difficult. Different applications serve different purposes, thus

with different requirements, features, and development methodologies. For instance, Office Suites

differ from a communication chats or file sharing applications.280

To this extent, application developers choose different log frameworks, formats, and default

configurations. In general, logs are created for the purpose of debugging and it is still unclear to

which extent they can also satisfy the requirements of the five categories described above. We will

try to answer this question in the next section.

4. Methodology285

This section presents the list of applications we selected for our study and the methods we used

to evaluate the usefulness of their logs for common forensic analysis tasks.

To conduct our study we selected 60 open-source applications across various categories, including

file managers, chat and communication tools, office software, file sharing applications, screen capture

programs, antivirus software, text editors, remote desktop applications, window managers, and290

application launchers. Our goal was to capture a wide range of applications, which can be used to

process untrusted data or to interact with a system in a way that can be interesting to capture for

a forensic investigation. We chose to focus on open-source applications as they provide access to

the source code, thus enabling a thorough examination of the nature and content of their individual

log statements.295

11

Table 1: List of analyzed applications

Category Application Description

File

Managers

Nautilus Default file manager of the GNOME desktop
Disks Default storage management of the GNOME desktop
Dolphin KDE’s file manager
nnn Terminal file manager
recoll Full-text search tool for Unix/Linux
Konqueror File management and preview based on web browsing
Thunar File manager for Linux and other Unix-like systems

Chat and

Communication

IceChat (Windows) IRC Client
BeeBEEP Peer-to-peer office messenger
Pidgin Multi-platform instant messaging client
signal-desktop A private messenger application
Mattermost-Desktop Platform for secure collaboration
Konversation User-friendly and fully-featured IRC client
jitsi VoIP, video conferencing, and instant messaging
wire-desktop Encrypted communication and collaboration app
session-desktop Onion routing-based messenger
HexChat IRC client
Terminal-Irssi Terminal-based IRC client
tox Peer-to-peer instant messaging and video-calling app

Office Tools

Calligra Office and graphic art suite by KDE
Xournal++ Handwriting note-taking software with PDF annotation support
SumatraPDF PDF Viewer
zael Offline documentation browser
Okular KDE document viewer
xpdf PDF viewer and toolkit
Apache Open Office Office productivity software suite
Scribus Libre Desktop Publishing
Document Viewer PDF Viewer for GNOME

Torrent and

File Sharing

Platforms

qBittorrent BitTorrent client
Deluge Cross-platform BitTorrent client
transmissiongtk Transmission BitTorrent client repository
frostwire BitTorrent client
warpinator File sharing across the LAN

Screen Capture

Tools

ShareX Capture or record any area of the screen
OBS-Studio Live streaming and screen recording
Greenshot (Windows) Screenshot manager

Security and

Antivirus

Seahorse Password and encryption key manager for GNOME
hashcat Password recovery utility
Clam AntiVirus (Linux) Open-source antivirus

Text Editors

Zettlr Markdown editor
gnome-text-editor Default editor of GNOME
Vim Highly configurable text editor
jrnl Simple journal application for the command line

Utilities

Console GNOMEs default terminal emulator
Cheese GNOME’s webcam application
Guvcview Webcam application
XDM Download manager

Media Players

VLC Media Player Video player
musikcube Terminal-based music player
Kodi Media player and entertainment hub

Window Man-

agers

IceWM Open window manager
tmux Terminal multiplexer
bspwm Tiling window manager
Qtile Hackable tiling window manager

Remote Desktop

Tools

Remotely A remote control and remote scripting solution
xrdp Open-source RDP server

App Launchers

albert A fast and flexible keyboard launcher
launchy Linux launcher
ulauncher Linux launcher
Wox Launcher for Windows

12

Table 1 presents an overview of our dataset. The applications we considered are developed in

various programming languages, including Java, Python, C, C++, C#, and Typescript. Although

some applications may contain components written in multiple languages (e.g., in the case of plugins

or extensions), our analysis focused on the primary language used for the development of the core

application.300

We downloaded the latest source code of each applications and used the SLOCCOUNT tool1

to count the lines of code (SLOC). We then employed a number of custom regular expressions

to identify and count the lines of log code (LOLC). Although this approach is similar to the one

adopted by previous studies (such as [23], [34], [32] and [33]), we payed particular attention to

improve the accuracy of the results by manually curating and customizing the process based on305

each application’s log framework or log method. This resulted in a set of custom regular expression

specifically tailored to each application, which allowed us to collect all messages and properly

recognize multi-line log statements.

We identified a number of features and parameters related to each log statement. Using this col-

lected information, we verified whether the application can support the five forensic tasks identified310

in Section 3.

Timestamps

To support the process of timeline development and visual representation of the sequence of

events, it is crucial for an application to provide log entries containing timestamp data.

Log2timeline is a very popular tool that significantly improves forensic analysis by allowing the315

creation of comprehensive timelines2. It is the de facto tool for parsing a variety of log files from

different data sources, thereby creating detailed timelines that present a chronological sequence of

events within the system. However, application logs lacking timestamp data become less useful

for forensic analysis, especially when using tools like Log2timeline. In such scenarios, Log2timeline

treats these logs as basic ’raw data’ with limited analytical potential. This limitation impacts the320

ability to establish events in a chronological order, detect anomalies and patterns, and assess the

duration and frequency of events.

Timestamps can be introduced explicitly by the developer into the logged message, or they can

1https://dwheeler.com/sloccount/
2https://github.com/log2timeline/plaso

13

be implicitly added (and often configured) by the logging framework adopted by the application.

To determine if timestamp data is present in the logs of the studied applications, we followed325

a series of steps. First, we identified the programming language and framework used in the ap-

plication’s source code because logging implementation can vary based on these factors. Second,

we analyzed the logging configuration files or code to ascertain which logging library or tools were

employed, thereby gaining insight into the available logging syntax and features. Third, we searched

for logging statements in the source code and inspected them for the presence of timestamp-related330

parameters or functions. For instance, in Python’s logging library, the format specifier can indi-

cate the inclusion of timestamp data in log messages. On top of that, we observed the time zones

implemented by the application in the process of recording logs.

It is usually recommended to standardize timestamp in UTC (Coordinated Universal Time) for

logging across all systems. This approach aligns with ISO 8601 standards [43], which prescribe the335

format for timestamps and time zones. According to these standards, timestamps should either

be set to UTC or to local time with an offset to UTC. Adopting this practice ensures consistency,

reduces complexity in analysis, and assists in accurately correlating events.

To confirm the presence of timestamps and timezone information we executed the applications

and observed the logs generated during their operation. During this process, we also checked if logs340

related to user actions were available. Overall, these steps offer a systematic approach to determine

whether timestamp data is present in the logs of the applications under study.

Unique Identifier

The presence of unique identifiers allow analysts to filter log entries and focus on specific aspects

of interest but also to connect a certain action with other logs or events collected elsewhere. For345

instance, a log entry that records a specific name of file being accessed by a specific user account can

be linked to a network log entry which shows the corresponding user connection being established

from the specific IP address.

350

Listing 1: Implementation of BeeBeep’s log in source code

//BeeBEEP code snippet

14

bool Core::downloadFile(VNumber user_id, const FileInfo& fi, bool show_message)

{355

...

qDebug() << "Downloading file" << qPrintable(fi.path()) << "from user" <<

qPrintable(u.path());

mp_fileTransfer->downloadFile(u.id(), fi);

return true;360

}

The code excerpt from BeeBEEP in Listing 1 is used to log any successful file downloads within

the application. The code uses the qDebug() function to print a log message at the debug level,

which includes the file path and the user’s path. This information is useful for detecting specific365

events, such as the downloading file and execution of potentially malicious files. By keeping track

of this data, the application can detect and mitigate any security risks to such file path or user’s

path.

Listing 2: Handling successful and failed download events in Deluge

370

//Deluge code snippet

def on_download_fail(failure):

log.warning(

’Error occurred downloading file from "%s": %s’,

url,375

failure.getErrorMessage(),

)

result = failure

return result

380

def on_download_success(result):

log.debug(’Download success!’)

return result

d = _download_file(385

15

url,

filename,

callback=callback,

headers=headers,

force_filename=force_filename,390

allow_compression=allow_compression,

handle_redirects=handle_redirects,

)

d.addCallbacks(on_download_success, on_download_fail)

return d395

Listing 2 showcases an excerpt from Deluge, a Python-based torrent application. The on download success

function acts as a callback, triggered by the deferred object resulting from the download file func-

tion upon successful file download. In this instance, when on download success is invoked, the

application logs a debug message noting the download is success and then returns the input result400

argument. Merely logging a message like ”Download success!” lacks detailed information about

the download, rendering it challenging to correlate events with specific actions. It is crucial to

incorporate more specifics, such as the file’s name or download URL, to enhance the context of a

successful download event.

On the other hand, the on download fail function performs a warning log with the URL and405

error message of the failure event, which provides more information about the failure and makes

it easier to diagnose problems or understand the behavior of the system. With this information in

hand, it is easier to determine the action and event identifier related to the logged event.

For this study, on the one hand we will investigate the number and percentage of log messages

that contain three types of unique identifiers: file and path names, user identifiers, and network410

endpoints (host names and/or IP addresses). A high number of unique identifiers in application

logs can ease the process of filtering log entries and focusing on specific aspects of event interest,

which is crucial for security-related tasks.

To gather this information, we analyzed each extracted log message from the applications to

identify the unique identifiers expected to be printed alongside the log message. This involves415

examining common name such as ‘ipAddress’, ‘srcIP’, ‘url’, etc., which typically represent unique

network-related identifiers. For cases where naming conventions are not immediately identifiable,

16

we manually traced the unique identifier back to its source declaration in the application’s source

code. This approach allows us to accurately classify the type of unique identifier included in each

log message.420

We also count the amount of text-only log entries – i.e., those that report a fixed message

without any parameter or identifier. Developers often use text-only messages because they are a

simple and easy way to mark certain points of the execution (e.g., error in data processing) for

debugging purposes. However, in the case of security-related tasks, text-only event logs may not

provide enough granularity and context to detect security incidents or understand the relationships425

between log entries. A high percentage of text-only log entries can therefore signal an application

whose logs are not suitable for event correlation and security investigations.

Partitioning Waypoints

Previous research has shown that by fusing both application and audit logs it is possible to

achieve a high level of precision in identifying the origin of an attack [42]. This operation requires the430

presence of particular messages that act as waypoint to partition the provenance graph. Complex

application consist of a set of units, such as separate windows, conversation threads, and processing

of network connections [42, 39, 38]. A unit is made up of a series of transactions, each representing

a single, sequential step in the execution of the unit. Therefore information such as the TabID,

FolderID, messageID or chatID can be used to identify the current execution unit, which is otherwise435

difficult to extrapolate at the syscall level.

In order for application logs to be used for event partitioning, each execution unit performed and

logged by the application should have a unique identifier to indicate the completion of an execution

context and the start of another one.

Therefore, we will investigate the availability of any unique identifiers that can act as a waypoint.440

In particular, we investigate whether logs contain information about when the application starts

to process a new document (or close an old one). For applications that do not involve files, we

will examine the availability of logs containing unique identifiers related to the processing of new

network connections or unique identifiers associated to new conversation threads. If these identifier

are present, we consider that an analyst (or an automated system) could use them as waypoint to445

partition the activity of the application in separate units.

17

User Actions

Actions such as downloading an infected attachment, clicking a malicious link, (un)consciously

changing settings, and allowing the application to execute untrusted documents can lead to security

incidents. Thus, an applications should log any actions which can later be used to investigate or450

detect attacks or attempts to misuse the software. However, despite the importance of logging

sensitive user actions (which is suggested by many guidelines and standards such as ISO 27002),

there is no precise checklist on how developers should identify such actions.

In our experiments we propose a list of user actions that should be logged for each category

of application, as summarized in Table 2. The list includes both the end-user’s interactions with455

the application and the application’s interactions with external environment. It is essential to note

that this list is not exhaustive and only used as a starting point to understand the current state of

application logs.

Log Levels

Log levels are used to configure the amount of recorded information and organize log data.460

For instance, trace, debug, and info levels usually provide detailed data that can be used for

debugging and application performance analysis. On the other hand, warn and error level logs

can be centralized to provide information on unusual events, which might be associated to security

threats. From a security perspective, the presence of a log level can help to determine whether an

event needs immediate investigation, could be deferred for a later analysis, or can be safely ignored.465

This prioritization, results in more efficient and effective security monitoring and analysis.

Therefore, in order to evaluate the effectiveness of application logs for detecting misuse, we will

assess the default log-level configuration and the consistency and availability of log levels associated

with specific user actions and events.

Exploitation470

While system-level monitoring can be capable of detecting when an application is compromised,

it is often insufficient to determine the cause (i.e., the input associated to the attack) which is

a valuable information for post-incident analysis and incident response. In principle, application

logs can help security analysts to better understand how the attack occurred and identify the

specific actions that led to the security incident. This information can be used to identify the root475

cause and remediate vulnerabilities in the application. Furthermore, these logs can help in forensic

18

Table 2: List of user actions to log for security analysis across various application categories

Application Category Actions to Log

File

manager

Search queries

Changes to file or document permissions

File or document executions

Archive operations

Chat and com-

munication

Login activities

Clicks on shared links

Unique, randomized, non-identifiable IDs for conversation activities

Attachment downloads

Office

File executions with embedded scripts

URL clicks within documents

Attempts to access restricted files

Macro executions

Changes to settings

Torrent and file

transfer client

Files downloaded

Seeding activities

Search queries

Peer connections

Screen capture
Screen capture activities

Saved screen captures

Security/Antivirus

Login activities

Acceptances to run quarantined files

Setting changes (e.g., enabling/disabling scanners)

Text editor

Installation and usage of external plugins

Link or URL clicks

Document openings and edits

Utilities

Service starts

Download or save activities

Installation and usage of external plugins

Media Player

Opened files

Data exports

External subtitle imports

Media play starts

External plugin or add-on installations

Runs of external plugins or add-ons

Window man-

ager

Setting changes

Session starts

Remote desktop

Login activities

Remote connection starts

Failed connections

Application

launcher

Search queries

Applications or documents launched

Setting changes

19

investigations to understand how the attacker gained access to the system, the actions they took,

and what data they managed to access.

Since logging all external inputs is impractical and embedding a custom anomaly-detection

approach to identify unusual cases is extremely complicated and error-prone, it is difficult to asses480

whether application logs contain sufficient information to capture malicious inputs. As a first step,

we will measure whether logs cover all exception blocks in the program and whether they also report

the data that was responsible for the exception.

In addition, we will perform five case studies in which we will execute Proof of Concept (PoC)

exploits collected from the Common Vulnerabilities and Exposures (CVE) database against vulner-485

able versions of five application in our dataset. After each successful exploitation, we will analyze

the logs searching for any entry that can be used to detect and identify the attack. We will also

evaluate the availability of these log entries and their relevance to incident response and forensic

investigations.

Availability490

The availability of log information depends on the application’s logging configuration. Some

applications provide debug logs or runtime logs by default to improve the application or to facilitate

the process of reporting unexpected crashes to the developers. Others may only log errors and

require users or administrators to manually edit configuration files to tune the amount of logged

information. Finally, some applications do not enable logging by default nor provide options to495

start logs in the deployment.

To determine the default availability and configuration of logs for each application, our method-

ology begins with a thorough review of the application’s documentation, where we specifically look

for any references to the default availability of logs or or any user-configurable options for logging

output. For applications where the documentation does not provide clear information on the log500

availability, or on the ability to configure logs, we proceed to run the applications in a host envi-

ronment. This allows us to manually check for any log-related information or settings that might

enabled or configurable.

20

5. Results

In this section, we present the results of our measurement. Table 3 provides an overview of505

the overall size and amount of logging statements in each application, along with the primary

programming language and the library or framework (if any) used for logging.

As a rough indication of the amount of logging, the last column shows the ratio between the

number of lines of code and the number of lines dedicated to logging. The value varies between

3.7% for the wire-desktop encrypted communication software to 0.03% for the musikcube application510

(with a median of 0.68% and a mean of 0.88%)

Our findings show that 11 of the studied applications provide application logs by default, while

49 did not, as indicated in Table B.6. However, among the applications that do not have the feature

of logging enabled by default, many provide a configuration or options for users to enable logging.

In fact, out of the 49 studied applications that did not provide logs by default at runtime, 47 offers515

users the capability to enable logging through configuration or options at runtime. This capability

can be leveraged for debugging, system analysis, or even execution partitioning. However, we also

found that the applications xpdf and XDM do not have the capability to produce runtime logs or

provide any options to enable logging.

Figure 1: Usage of log level

Figure 1 shows the number of applications that use the different log levels. It is interesting to520

observe that 21 of them generated messages without any specific level. Warning is the most common

21

Table 3: Logs properties of studied applications.

Categories Applications Logging utilities Language SLOC LOLC Percentage

of log

state-

ment(%)

File managers

Files - Nautilus GLib Message Logging C 98739 128 0.13

Disks GLib Message Logging C 20724 68 0.33

Dolphin Qt - QMessageLogger C++ 40003 47 0.12

nnn Own logging facilities C 11953 118 1.00

recoll Own logging facilities C++ 93972 1758 2.34

Konqueror Qt - QMessageLogger C++ 52191 370 0.72

Thunar GLib Message Logging C 65835 105 0.16

Chat and

Communication

IceChat(Windows) Windows EventLog Class C# 61981 261 0.42

BeeBEEP Qt - QMessageLogger C++ 61392 1147 1.89

Pidgin GLib Message Logging C 169056 1320 0.78

signal-desktop Pino Logging Typescript 208740 1384 0.66

mattermost desktop electron-log Typescript 10945 224 2.05

Konversation Qt - QMessageLogger C++ 47393 259 0.55

jitsi SLF4J Java 301383 2858 0.95

wire-desktop electron-log Typescript 5677 212 3.73

session-desktop Bunyan logging API Typescript 57841 609 1.05

HexChat Own logging facilities C 62090 611 0.98

Terminal- Irssi GLib Message Logging C 63755 440 0.69

tox Own logging facilities C 48274 442 0.92

Office

Calligra Qt - QMessageLogger C++ 660504 698 0.11

Xournal++ GLib Message Logging C++ 52221 234 0.46

SumatraPDF Own logging facilities C++ 1059517 391 0.05

zael Qt - QMessageLogger C++ 13886 36 0.26

Okular Qt - QMessageLogger C++ 91398 434 0.52

xpdf Own logging facilities C++ 125529 1069 0.85

ApacheOpenOffice Own debug macro C++ 4591378 15235 0.33

Scribus Qt - QMessageLogger C++ 390442 515 0.13

Evince-DocumentViewer GLib Message Logging C 81644 572 0.70

Torrent and file

sharing platform

qBittorrent Qt - QMessageLogger C++ 58813 437 0.74

Deluge Python logging facilities Python 43956 1266 2.88

transmissiongtk Own logging facilities C++ 87299 193 0.22

frostwire Java logging utilities Java 148930 942 0.63

warpinator Python logging facilities Python 4111 134 3.26

Screen-capture

ShareX .Net logging utilities C# 115016 236 0.21

OBS-Studio Own logging facilities C 340593 924 0.27

Greenshot(Windows) Log4net C# 53293 684 1.28

Security or

Antivirus

Seahorse Qt - QMessageLogger C 16901 88 0.52

hashcat Own logging facilities C 198410 1519 0.77

ClamAntiVirus(Linux) Own logging facilities C 215996 1492 0.69

Text editor

Zettlr Own logging facilities Typescript 23770 89 0.37

gnome-text-editor Qt - QMessageLogger C 24903 48 0.19

Vim Own logging facilities C 399870 140 0.04

jrnl Python logging facilities Python 4000 22 0.55

Utilities

Console GLib Message Logging C 5856 23 0.39

Cheese Gstreamer debugging tool C 6624 17 0.26

Guvcview Own logging facilities C 30320 901 2.97

XDM Java basic log utilities Java 27955 522 1.87

Media player

VLCMediaplayer Own logging facilities C 607435 454 0.07

musikcube Own logging facilities C++ 365945 122 0.03

Kodi spdlog C++ 732891 5619 0.77

Window manager

IceWM Own logging facilities C 70029 621 0.89

tmux Libevent C 63656 647 1.02

bspwm Own logging facilities C 12147 198 1.63

Qtile Python logging facilities Python 38947 259 0.67

Remote desktop
Remotely .Net Logging Basics C# 58550 256 0.44

xrdp Own logging facilities C 84133 1089 1.29

App launcher

albert Qt - QMessageLogger C++ 4264 96 2.25

launchy Qt - QMessageLogger C++ 11735 33 0.28

ulauncher Python logging facilities Python 6035 96 1.59

Wox Own logging facilities C# 15367 150 0.98
22

level adopted by the applications in our dataset, but we also observed a number of unconventionally

levels, such as ‘silly’, ‘advice’, and ‘chatter’, which we classified as ‘others’.

Additionally, our analysis also revealed inconsistent log levels used for various user actions

across the examined applications. For example, in the ‘Utilities’ category, the applications produced525

different log levels for the same user action. For instance, when a user starts the application, Cheese

generates logs with the ‘Info’ level, while Guvcview and XDM produce logs without any level. This

variability in log levels used by different applications can make it difficult to generalize the analysis,

thus prolonging the process of security investigations.

5.1. Application Logs for Timeline Development530

Only 31/60 of the applications in our study included timestamps in every log entry. Moreover,

the implementation of timestamps varied among different application categories and is dependent

on the implementation of the application’s logging utilities. Of the 29 applications that do not

include timestamps, 12 implemented their own logging utility, 9 used Qt’s QMessageLogging, five

GLib Message Logs, one the default Java, one with Windows Event Log and one with .Net logging535

libraries, as presented in Table B.6. It is interesting to observe that some applications do not

include timestamps also when the logging frameworks they use support this feature. Even worse,

in these case we were unable to find any configuration variable defined by the developers to include

timestamps in all logs.

In our investigation of timestamp granularity, as presented in Table C.7, we observed that while540

most applications use a logging module, developers often define their own format for date and time.

Due to this flexibility and lack of standardized guidelines, applications can differ significantly

in their timestamp presentations. The majority of the applications log timestamps up to the

granularity of seconds. However, 17 of them extend this to milliseconds. Notably, tmux logs

timestamps up to the microsecond level. We noted that hashcat logs the date and time solely at545

the commencement and conclusion of particular operations, like the initiation of a hashing process.

Regarding the availability of date data, 11 applications lacked date information. 20 logged both

the month and date, but 12 out of 31 did not include the year in their logs. While the exact year

might not always be crucial for security analysis, this inconsistency in timestamp presentation could

complicate log analyses, especially when constructing detailed timelines using application logs.550

According to our data, only four applications set their timestamp timezone to UTC (Coordinated

23

Universal Time), while the others use the system’s local timezone for storing log entries. Storing

logs in the UTC format or local time with an offset to UTC is a widely adopted practice, in line

with ISO 8601 standards, in both software development and system administration. This universal

standard is not affected by changes in time zones or daylight saving time adjustments, making it555

a crucial consistency factor when dealing with systems or users across multiple time zones. This

ensures that log timestamps remain uniform and unchanged across different geographical locations.

Furthermore, in the process of analyzing logs, particularly during incident response, having a

single, consistent time reference like UTC simplifies the process, as there is no need to convert times

from different time zones to understand the sequence of events.560

This emphasizes the importance of providing developers with clear guidelines for implementing

timestamps in application logs.

5.2. Application Logs for Event Correlation

Figure F.2 shows that 77% of the applications in our dataset contain more text-only log messages

(i.e., hardcoded strings with no variable parts) than messages containing user, file, and network565

identifiers combined. Text-only messages provide limited information about the logged events,

diminishing the effectiveness of logs for practical investigation.

Table A.5 shows the actual amount of application log messages that contain unique identifiers

related to users (username, account IDs, or nick names), network (IP addresses, domain names,

and URIs), and file information (file and directory names). The value varied considerably among570

the applications in our dataset. For instance, 15.4% of the log messages of BeeBEEP report the

associated user identifier, 17.4% of the messages of Konversation contains unique network identifiers,

and 36.1/% of the messages of Zael have an associated filename.

Conversely, 11 applications didn’t record any network-related unique identifiers (UIDs) in their

logs and four applications didn’t log any file UIDs at all. However, the decision to log UIDs575

associated with network or files largely depends on an application’s core functionality and in some

cases it might not be necessary or not apply at all. Applications categorized under File Manager,

Office, and Security/Antivirus often integrate features like cloud functionality, updates via network,

cloud-based storage, or collaboration tools. Specifically, for Security and Antivirus applications,

logging is indispensable for tracing malicious activities, updating databases, or connecting to central580

databases.

24

If we look at the numbers of log statement in application, the worst in our dataset are the Console

(a terminal emulator) and Cheese (a webcam tool to capture photos and videos) applications, whose

logs are very limited (respectively only 23 and 17 log statements in their source code) and contain

no unique identifiers at all across the three areas. This prevents any possible correlation with other585

sources of information and severely limit the use of these logs for forensic purposes. Finally, it is

important to stress the fact that our study only assesses the broad availability of unique identifiers

and further research is necessary to understand the usefulness of these UIDs in actual investigations.

5.3. Application Logs for Execution Partitioning

Application-generated logs can offer valuable insights on the usage patterns and behaviors of590

users, as well as detailed information about the inner workings of the application, including its

interactions with other systems. Previous research has shown that these logs can be effectively

leveraged for execution partitioning to derive precise attack provenance graphs. Logs that are not

enabled at runtime may not be accessible for security analysis, and this can greatly decrease the

possibility of security monitoring and analysis.595

Previous research on utilizing application logs for execution partitioning highlighted the impor-

tance of including unique identifiers such as file names, IPs, or URIs to represent object of data

in a single transaction of logs. These types of information can be leveraged to identify or gain

insight into the execution recorded by the application. Thus, we examined the presence of unique

identifiers in the process of opening or closing a new file or establishing new network connection or600

disconnecting from the network as a way to indicate the beginning of a new execution unit in the

logs. The outcomes derived from utilizing application logs for execution partitioning can be found

in Table B.6.

Our research revealed that out of the examined applications, 37 produced log entries containing

at least one unique identifier associated to the ongoing execution unit. The distribution of these605

unique identifiers varied among the different application categories. For instance, among the file

management applications, only one included a unique identifier in its log entries. Meanwhile,

two out of the applications in the chat and communication category did not include any unique

identifiers. In contrast, all of the applications in the screen capture, media player, and remote

desktop categories contained at least one unique identifier in their log entries.610

Listing 3: Pidgin log entries

25

--

(16:06:22) account: Connecting to account ###@irc.###.com.

(16:06:22) connection: Connecting. gc = 0x556421bc17d0

(16:06:22) dnsquery: Performing DNS lookup for irc.ubuntu.com615

(16:06:22) Session Management: Received first save_yourself

(16:06:22) dns: Created new DNS child 5341, there are now 1 children.

(16:11:22) prefs: /pidgin/conversations/toolbar/wide changed, scheduling save.620

(16:11:22) gtkconv: setting active conversation on toolbar 0x55df14133d90

(16:11:28) util: Writing file prefs.xml to directory /###/###/.purple

(16:11:28) util: Writing file /###/###/.purple/prefs.xml

(16:11:31) gtkconv: setting active conversation on toolbar 0x55df13ae2000

(16:11:32) gtkconv: setting active conversation on toolbar 0x55df14133d90625

(16:11:33) server: Leaving room: [name of chat room]

(16:11:33) gtkconv: setting active conversation on toolbar 0x55df13ae2000

(16:11:33) irc: Got a PART on [name of chat room], which doesn’t exist -- probably closed

(16:11:39) util: Writing file blist.xml to directory /###/###/.purple

(16:11:39) util: Writing file /###/###/.purple/blist.xml630

(16:11:42) roomlist: unreffing list, ref count now 0

(16:11:42) roomlist: destroying list 0x55df13f35580

(16:11:44) account: Disconnecting account ###@irc.###.com (0x55df139226f0)

(16:11:44) connection: Disconnecting connection 0x55df13d97a60

(16:11:44) connection: Deactivating keepalive.635

(16:11:44) connection: Destroying connection 0x55df13d97a60

(16:11:44) certificate: CertificateVerifier tls_cached unregistered

(16:11:44) certificate: CertificateVerifier singleuse unregistered

(16:11:44) certificate: CertificatePool tls_peers unregistered

(16:11:44) certificate: CertificatePool ca unregistered640

(16:11:44) main: Unloading normal plugins

(16:11:44) plugins: Unloading plugin Message Notification

26

Listing 3 shows a Pidgin log entries when user make login to the application, changing the pref-645

erence of the application, leaving chat room and logging out from the chat application. The logs

generated by the applications provide a comprehensive view of the actions taken within the appli-

cation, including user login information, file save events, and changes in preferences. For instance,

there are a log entries shows changes in preference for the chat program (prefs: /pidgin/conversa-

tions/toolbar/wide changed, scheduling save), leaving a chat room with the name of room (server:650

Leaving room: [name of chat room]), and connecting and disconnecting from the account. The log

also shows that the program is writing and saving files, such as prefs.xml and blist.xml, to the

user’s file directory.

As we look at the log entries, it shows that for each new unit of execution, there are log

entries that contain unique identifiers such as the application account UID when user connections655

were made or server names when user connected to chat server. Additionally, the application logs

provide clear execution units for every log entry, making it easier to identify and categorize actions.

For example, actions related to a user’s account will be categorized as ’account’ and actions related

to a server will be categorized as ‘server’. The clear representation of this log entries can facilitate

the process of parsing and partitioning of execution units.660

On the other hand, Listing 4 shows instead the negative example of Calligra’s logs, where entries

are primarily related to errors and configuration issues. These entries indicate problems like missing

icon themes, inability to access files or directories, and challenges initializing features or setting

shortcuts. Though these log details are essential for enhancing the application’s performance, they

don’t help in execution partitioning because they lack data on the made execution units. To use this665

log for partitioning, one would need a deeper analysis to spot usage patterns and object allocation

in the application.

Listing 4: Caligra log entries

Icon theme "breeze" not found.670

connect failed: No such file or directory

Hspell: can’t open /usr/share/hspell/hebrew.wgz.sizes.

kf.sonnet.clients.hspell: HSpellDict::HSpellDict: Init failed

CalloutPathTool::CalloutPathTool(KoCanvasBase*) QAction(0x55e2cc8079b0 text="To Path"

toolTip="To Path" shortcut=QKeySequence("P") menuRole=TextHeuristicRole visible=true)675

27

kf.xmlgui: Shortcut for action "object_order_raise" "&Raise" set with

QAction::setShortcut()! Use KActionCollection::setDefaultShortcut(s) instead.

kf.xmlgui: Shortcut for action "object_order_lower" "&Lower" set with

QAction::setShortcut()! Use KActionCollection::setDefaultShortcut(s) instead.

kf.xmlgui: Shortcut for action "object_order_front" "Bring to &Front" set with680

QAction::setShortcut()! Use KActionCollection::setDefaultShortcut(s) instead.

5.4. Application Logs for Misuse Detection

To understand the use of application logs for misuse detection, we have compiled a list of user685

actions in different categories of applications. The list includes both events related to the end-user’s

interactions with the application and the events related to the application’s interactions with the

external environment. This list of actions guide us in identifying what the application should log

to enable post-attack analysis. Logging user actions can provide a record of what actions were

taken within application, allowing to identify patterns of behavior that may indicate misuse, such690

as repeated access to unauthorized resources. We performed each action on the studied applications

and analyzed the logs they produced. The results as presented in Table D.8.

Our analysis of the log content and levels revealed inconsistencies among the applications in the

same category when it came to logging user actions. For example, in the chat and communication

category, BeeBEEP was found to generate detailed logs of all studied user actions at the Debug log695

level, while Irrsi-Client and Jitsi did not produce any logs for the tested user actions.

In particular, as part of our testing of chat and communication applications, we examined

whether users were given the options to record or log conversations. All five applications we tested

in this category provided the option for users to save conversation logs on their host computers.

This can be useful for future reference or to recall important details from earlier conversations.700

However, this raises significant privacy concerns as these logs are stored in plain text and include

names and body of messages. On the other hand, we discovered that most user actions which can

be used for forensic purposes, such as downloading files and clicking on shared links, are also logged

in the conversation log.

Moreover, in the office application category, most of the studied applications did not generate705

any logs regarding user actions. Okular was the only exception as they producing a ‘Debug’ log

28

when a user clicks on an embedded URL.

In the category of office applications, the majority of the applications we studied did not log

any user actions. Okular was the only exception, producing a ‘Debug’ log when a user clicks on an

embedded URL.710

5.5. Application Logs for Attack Detection

As we discussed in the previous section, it is very difficult for an application to detect exploitation

attempts. One aspect that, while insufficient, might help in this regard is to log any anomalous or

error condition. Logging, particularly at these detected error junctures, is crucial as it sheds light

on potential issues before they manifest as overt failures [44]. One way for programs to detected715

unexpected errors is through exceptions and therefore we believe that logging these conditions (and

the data that might have been responsible to trigger them) can be a first step for an applications to

record malicious undertakings or potential attacks. Thus, a consistent logging approach in exception

blocks yields profound insights into an application’s behavior, facilitating the identification of any

unusual patterns suggestive of security threats or breaches.720

However, Table E.9 reveals that only 25 out of 60 applications implemented exception handling,

due to the fact that exceptions are not supported in all programming languages. Among them, Open

Office has the highest number of exception blocks. GreenShot is instead the application with the

largest fraction (77.4%) of logging statements in exception blocks, followed by Mattermost-Desktop

at 74.51%.725

Only five application (Transmission, Ulauncher, IceChat, Warpinator, and Wox) logged all

exception statements, aiding in providing valuable information for troubleshooting and resolving

issues. In contrast, three apps (Jrnl, Qtile, and Recoll) did not produce any log related to exceptions.

We conclude that this inconsistency is due to a lack of standard guidelines for logging in application

development.730

Whether application logs are sufficient to detect and investigate a successful exploitation is a

very complicated question, as it vastly depends on the type of vulnerability and the exploit itself.

Therefore, it is difficult to answer this point by simply looking at the log messages themselves.

Instead, we decided to conduct a separate study in which we selected five applications in our dataset

and tested public exploits against them. The application version, platform, and exploitation type,735

are shown in Table 4.

29

Table 4: The result of the logs generated during the exploitation of selected applications

Applications Version Tested Platform Type of exploitation

Evince 3.17.1 Ubuntu 16.04.6 Execution of arbitrary command

Nautilus 3.4.2 Kali 1.0.6 Execution of arbitrary command

LibreOffice Writer 6.2.5 Ubuntu 18.04 Directory traversal attack

VLC Media Player 2.2.8 Windows 10 Execution of arbitrary code via MKV files

HexChat 2.10.0 Ubuntu 22.04 Directory traversal attack

Our study indicates considerable variance in the utility of application logs for attack detection,

subject to the specific application and the nature of the attack. While three applications logged

events during the exploitation, these logs lacked definitive indicators of successful breaches. The

absence of logs that show any exploitation makes it harder for analysts to use them for detecting740

security threats. For example, in our study with VLC Media Player, even when we turned on the

highest logging level, no logs were produced during an attack. This lack of logs, including user

actions, highlights challenges in using application logs from VLC for security purposes. In contrast,

with HexChat, when users enable logging, the application records vital details like the connected

server’s IP, connection status, and chat history. This can offer insights into potential threats. Yet,745

this logging is only active when a user permits it. Many might not do so due to privacy concerns.

6. Result Summary

Based on our analysis conducted on 60 popular desktop applications, we have determined that

their logs are not well suited for forensic purposes. In fact, our findings showed that:

1. 29/60 of the applications did not include timestamps in their log entries, making it challenging750

to determine the chronological order of events.

2. More than half of the applications produce log messages consisting mainly in constant text

strings. Compared to messages that contain identifiers like user, network, and file data, this

emphasis on text-only logs complicates event correlation.

3. 23/60 of the applications did not log any unique identifier at the beginning of a new execution755

unit, making it challenging to define new execution units and objects involved in those units.

30

4. Inconsistent logging of specific user actions across different applications makes it difficult for

application and security analysts to understand patterns of behavior that may indicate misuse.

5. 35/60 of the studied applications did not use exception handling. Out of the 25 remaining

applications, only five applications thoroughly logged exception statements. Thus, valuable760

information about unexpected errors and potentially vulnerable features or code could go

unnoticed.

6. Successful exploitation often does not result in any relevant log data, and even when such

data is produced, it is not available by default.

In conclusion, the results of our study highlight several significant challenges in leveraging ap-765

plication logs for security analysis. Even when logs are enabled, the deficiency of timestamps in 29

of the studied applications, the high proportion of text-only log events in over half of the applica-

tions, and the inconsistent logging of user actions and unique identifiers across different applications

make it difficult for security analysts in performing thorough assessments. These findings highlight

the need for improved logging practices for better logging to aid security analysis and incident770

detection.

7. Discussion

In this section, we discuss the implications of our findings and possible future directions.

Needs of Application’s Logs for Forensic. Our analysis of 60 popular open-source applications

suggests that current logging practices of desktop software are largely inadequate, limiting the775

effectiveness of their logs for forensic purposes. In particular, our results show that while these

logs are rich in details, they often lack critical data, such as consistent timestamps and unique

identifiers, which are essential for effective forensic analysis. This findings highlight the necessity

to align application logs with best practices already adopted in other sources, such as operating

systems and networks.780

Investigators frequently compile comprehensive super-timelines during incidents or attack inves-

tigations. These timelines typically involve data collected from a variety of sources, each offering

distinct insights and perspectives, and contributing to a more extensive and fine-grained analysis.

31

It is crucial to understand that our research does not suggest to rely solely on application logs. In-

stead, it emphasizes their potential use to complement existing data sources, thanks to the unique785

contextual information application logs can provide.

In fact, we believe the application logs can play a significant and specific role in the context of

an investigation. The availability of their data can be crucial to fully understand the the interaction

of users with external data or events – connecting the dots provided by other logs.

Sadly, due to their inadequacy, these logs are still under-represented in broader forensic studies.790

Understanding their limitations, which is the goal of our study, is crucial to mitigate this problem.

Solutions to Enhance Application Logging. Our research emphasizes a number of issues and

inconsistencies with application logs and emphasizes the importance of proposing actionable solu-

tions. Unfortunately, there are limited guidelines and practical solutions proposed in the literature

that focus specifically on the forensic use case. Even worse, there is a lack of static analysis tools795

that can help developers to identify (and improve) logging issues during the development lifecycle.

We believe that our taxonomy can help researchers to advance in both directions: to first create

guidelines of what needs to be logged, and then to develop tools that can automatically enforce or

verify that the implementation follows these guidelines.

Certain things are easy to fix, such as inconsistencies in the timestamp formats or the use of800

predefined log levels. These cases can be fixed by adopting a proper and standardized log framework

or library. Other issues, like the lack of unique identifiers or the absence of log statements that

precisely report error and exceptions, are more complex. Finally, some of the aspects are specific

to a certain class of applications and thus need to be addresses on a case-by-case basis. This is the

case, for instance, of the need to report when an application parses new external and user-provided805

data or when (and how) it interacts with the rest of the environment.

Finally, new forensic tools need to be developed to take advantage of this information and help

investigators to combine and correlate application logs with other sources.

Overall, the collaboration between software engineering, cybersecurity, digital forensics, indus-

try, and academia is essential for developing these guidelines and tools.810

32

8. Conclusion

It is important for application logs to be ready for security analysis and forensic investigation,

ensuring that critical information about application events is captured, preserved, and available for

use. Therefore, this study highlights the challenges faced in utilizing application logs for security

analysis. Application logs play a critical role in providing essential information about events be-815

tween users and applications, but their use in security analysis has been understudied. This study

significantly contributes to the understanding of the challenges in using application logs for security

analysis. The findings indicate that the current logging practices of 60 open-source applications

are inadequate for meeting common forensic tasks, such as timeline development, event correlation,

execution partitioning, misuse detection, and attack detection. The findings reveal the need for820

including timestamps in logs, improving the inclusion of unique identifiers in log entries, and ensur-

ing consistent logging of specific user actions. Additionally, the study highlights the importance of

including data on successful exploitation in logs for detecting and preventing future attacks. The

significance of this study lies in providing insights into the challenges of using application logs for

security analysis and the necessity to improve application logging practices for security purposes.825

By enhancing the quality of application logs, security analysts and forensic investigators can more

effectively monitor application events, detect security incidents, and respond to them.

Through our analysis, we aimed to understand the quality and consistency of log data across

different applications and to identify any potential issues or gaps in application logs for security.

By providing an in-depth examination of the data provided by application logs, we aim to offer830

valuable insights into their potential as a tool for detecting and preventing security-related issues.

References

[1] Z. Li, A. R. Chen, X. Hu, X. Xia, Are They All Good? Studying Practitioners Expectations on

the Readability of Log Messages, 38th IEEE/ACM International Conference on Automated Software

Engineering (ASE 2023) (2023).835

[2] S. Locke, H. Li, T.-H. Chen, W. Shang, W. Liu, LogAssist: Assisting Log Analysis Through Log

Summarization, IEEE Transactions on Software Engineering 48 (9) (2022) 3227–3241. doi:10.1109/

TSE.2021.3083715.

URL https://ieeexplore.ieee.org/document/9442364/

33

https://ieeexplore.ieee.org/document/9442364/
https://ieeexplore.ieee.org/document/9442364/
https://ieeexplore.ieee.org/document/9442364/
https://doi.org/10.1109/TSE.2021.3083715
https://doi.org/10.1109/TSE.2021.3083715
https://doi.org/10.1109/TSE.2021.3083715
https://ieeexplore.ieee.org/document/9442364/

[3] Z. Li, C. Luo, T.-H. Chen, W. Shang, S. He, Q. Lin, D. Zhang, Did We Miss Something Important?840

Studying and Exploring Variable-Aware Log Abstraction, in: 2023 IEEE/ACM 45th International

Conference on Software Engineering (ICSE), IEEE, Melbourne, Australia, 2023, pp. 830–842. doi:

10.1109/ICSE48619.2023.00078.

URL https://ieeexplore.ieee.org/document/10172652/

[4] Y. Huo, Y. Li, Y. Su, P. He, Z. Xie, M. R. Lyu, AutoLog: A Log Sequence Synthesis Framework for845

Anomaly Detection, arXiv:2308.09324 [cs] (Aug. 2023).

URL http://arxiv.org/abs/2308.09324

[5] J. King, R. Pandita, L. Williams, Enabling forensics by proposing heuristics to identify mandatory log

events, in: Proceedings of the 2015 Symposium and Bootcamp on the Science of Security, HotSoS ’15,

Association for Computing Machinery, New York, NY, USA, 2015. doi:10.1145/2746194.2746200.850

[6] F. Rivera-Ortiz, L. Pasquale, Towards automated logging for forensic-ready software systems, in: 2019

IEEE 27th International Requirements Engineering Conference Workshops (REW), 2019, pp. 157–163.

doi:10.1109/REW.2019.00033.

[7] F. Rivera-Ortiz, L. Pasquale, Automated modelling of security incidents to represent logging require-

ments in software systems, in: Proceedings of the 15th International Conference on Availability, Re-855

liability and Security, ARES ’20, Association for Computing Machinery, New York, NY, USA, 2020.

doi:10.1145/3407023.3407081.

[8] D. Wheeler, Understanding seventeenth-century ships logbooks: An exercise in historical climatology,

Journal for Maritime Research 6 (1) (2004) 21–36. doi:10.1080/21533369.2004.9668335.

URL http://www.tandfonline.com/doi/abs/10.1080/21533369.2004.9668335860

[9] Payment card industry (pci) data security standard requirements and security assessment procedures

version 3.2.1 (2018).

[10] Five guidelines for robust logging — hackernoon.

URL https://hackernoon.com/five-guidelines-for-robust-logging

[11] Logging best practices - dzone performance.865

URL https://dzone.com/articles/logging-best-practices

[12] Logging best practices - dev community.

URL https://dev.to/raysaltrelli/logging-best-practices-obo

34

https://ieeexplore.ieee.org/document/10172652/
https://ieeexplore.ieee.org/document/10172652/
https://ieeexplore.ieee.org/document/10172652/
https://doi.org/10.1109/ICSE48619.2023.00078
https://doi.org/10.1109/ICSE48619.2023.00078
https://doi.org/10.1109/ICSE48619.2023.00078
https://ieeexplore.ieee.org/document/10172652/
http://arxiv.org/abs/2308.09324
http://arxiv.org/abs/2308.09324
http://arxiv.org/abs/2308.09324
http://arxiv.org/abs/2308.09324
https://doi.org/10.1145/2746194.2746200
https://doi.org/10.1109/REW.2019.00033
https://doi.org/10.1145/3407023.3407081
http://www.tandfonline.com/doi/abs/10.1080/21533369.2004.9668335
https://doi.org/10.1080/21533369.2004.9668335
http://www.tandfonline.com/doi/abs/10.1080/21533369.2004.9668335
https://hackernoon.com/five-guidelines-for-robust-logging
https://hackernoon.com/five-guidelines-for-robust-logging
https://dzone.com/articles/logging-best-practices
https://dzone.com/articles/logging-best-practices
https://dev.to/raysaltrelli/logging-best-practices-obo
https://dev.to/raysaltrelli/logging-best-practices-obo

[13] Logging guidelines for developers - diwebsity.

URL https://www.diwebsity.com/2016/04/05/logging-guideliness/870

[14] Logging guidelines.

URL https://developer.atlassian.com/server/confluence/logging-guidelines/

[15] Logging best practices: The 13 you should know — dataset.

URL https://www.dataset.com/blog/the-10-commandments-of-logging/

[16] Developer’s guide - logging - best practices.875

URL https://doc.onloupe.com/Logging_BestPractices.html

[17] OWASP, Logging - owasp cheat sheet series.

URL https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html

[18] A. Chuvakin, G. Peterson, How to do application logging right, IEEE Security and Privacy 8 (4) (2010)

82–85. doi:10.1109/MSP.2010.127.880

[19] D. Brouwer, P. Mertens, Forensic logging requirements (2015).

URL https://www.compact.nl/articles/forensic-logging-requirements/

[20] E. Casey, S. Barnum, R. Griffith, J. Snyder, H. Van Beek, A. Nelson, Advancing coordinated cyber-

investigations and tool interoperability using a community developed specification language, Digital

Investigation 22 (2017) 14–45. doi:10.1016/j.diin.2017.08.002.885

URL https://linkinghub.elsevier.com/retrieve/pii/S1742287617301007

[21] E. Casey, S. Barnum, R. Griffith, J. Snyder, H. Van Beek, A. Nelson, The Evolution of Expressing

and Exchanging Cyber-Investigation Information in a Standardized Form, in: M. A. Biasiotti, J. P.

Mifsud Bonnici, J. Cannataci, F. Turchi (Eds.), Handling and Exchanging Electronic Evidence Across

Europe, Vol. 39, Springer International Publishing, Cham, 2018, pp. 43–58, series Title: Law, Gover-890

nance and Technology Series. doi:10.1007/978-3-319-74872-6_4.

URL http://link.springer.com/10.1007/978-3-319-74872-6_4

[22] E. Casey, A. Nelson, J. Hyde, Standardization of file recovery classification and authentication, Digital

Investigation 31 (2019) 100873. doi:10.1016/j.diin.2019.06.004.

URL https://linkinghub.elsevier.com/retrieve/pii/S1742287618304602895

[23] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang, T. Xie, Where do developers log? an

empirical study on logging practices in industry, in: Companion Proceedings of the 36th International

Conference on Software Engineering, 2014, pp. 24–33.

35

https://www.diwebsity.com/2016/04/05/logging-guideliness/
https://www.diwebsity.com/2016/04/05/logging-guideliness/
https://developer.atlassian.com/server/confluence/logging-guidelines/
https://developer.atlassian.com/server/confluence/logging-guidelines/
https://www.dataset.com/blog/the-10-commandments-of-logging/
https://www.dataset.com/blog/the-10-commandments-of-logging/
https://doc.onloupe.com/Logging_BestPractices.html
https://doc.onloupe.com/Logging_BestPractices.html
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html
https://doi.org/10.1109/MSP.2010.127
https://www.compact.nl/articles/forensic-logging-requirements/
https://www.compact.nl/articles/forensic-logging-requirements/
https://linkinghub.elsevier.com/retrieve/pii/S1742287617301007
https://linkinghub.elsevier.com/retrieve/pii/S1742287617301007
https://linkinghub.elsevier.com/retrieve/pii/S1742287617301007
https://doi.org/10.1016/j.diin.2017.08.002
https://linkinghub.elsevier.com/retrieve/pii/S1742287617301007
http://link.springer.com/10.1007/978-3-319-74872-6_4
http://link.springer.com/10.1007/978-3-319-74872-6_4
http://link.springer.com/10.1007/978-3-319-74872-6_4
https://doi.org/10.1007/978-3-319-74872-6_4
http://link.springer.com/10.1007/978-3-319-74872-6_4
https://linkinghub.elsevier.com/retrieve/pii/S1742287618304602
https://doi.org/10.1016/j.diin.2019.06.004
https://linkinghub.elsevier.com/retrieve/pii/S1742287618304602

[24] Z. Li, T. H. Chen, W. Shang, Where Shall We Log? Studying and Suggesting Logging Locations in

Code Blocks, Proceedings - 2020 35th IEEE/ACM International Conference on Automated Software900

Engineering, ASE 2020 (2020) 361–372doi:10.1145/3324884.3416636.

[25] M. Cinque, D. Cotroneo, A. Pecchia, Event logs for the analysis of software failures: A rule-based

approach, IEEE Transactions on Software Engineering 39 (6) (2013) 806–821. doi:10.1109/TSE.

2012.67.

[26] K. Yao, G. B. de Pdua, W. Shang, C. Sporea, A. Toma, S. Sajedi, Log4perf: Suggesting and updat-905

ing logging locations for web-based systems performance monitoring, Empirical Software Engineering

25 (1) (2019) 488531. doi:10.1007/s10664-019-09748-z.

[27] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, D. Zhang, Learning to log: Helping developers make

informed logging decisions, Proceedings - International Conference on Software Engineering 1 (2015)

415–425. doi:10.1109/ICSE.2015.60.910

[28] R. Ding, H. Zhou, J. G. Lou, H. Zhang, Q. Lin, Q. Fu, D. Zhang, T. Xie, Log2: A cost-aware logging

mechanism for performance diagnosis, 2015.

[29] H. Li, W. Shang, A. E. Hassan, Which log level should developers choose for a new logging statement?,

Empirical Software Engineering 22 (2017) 1684–1716. doi:10.1007/s10664-016-9456-2.

[30] P. He, S. He, Z. Chen, M. R. Lyu, Characterizing the natural language descriptions in software logging915

statements, ASE 2018 - Proceedings of the 33rd ACM/IEEE International Conference on Automated

Software Engineering (2018) 178–189doi:10.1145/3238147.3238193.

[31] Z. Liu, X. Xia, D. Lo, Z. Xing, A. E. Hassan, S. Li, Which variables should i log? (2021). doi:

10.1109/TSE.2019.2941943.

[32] D. Yuan, S. Park, Y. Zhou, Characterizing logging practices in open-source software, Proceedings -920

International Conference on Software Engineering (2012) 102–112doi:10.1109/ICSE.2012.6227202.

[33] B. Chen, Z. M. Jiang, Characterizing and detecting anti-patterns in the logging code, 2017. doi:

10.1109/ICSE.2017.15.

[34] B. Chen, Z. M. J. Jiang, Characterizing logging practices in java-based open source software projects

a replication study in apache software foundation, Empirical Software Engineering 22 (2017). doi:925

10.1007/s10664-016-9429-5.

36

https://doi.org/10.1145/3324884.3416636
https://doi.org/10.1109/TSE.2012.67
https://doi.org/10.1109/TSE.2012.67
https://doi.org/10.1109/TSE.2012.67
https://doi.org/10.1007/s10664-019-09748-z
https://doi.org/10.1109/ICSE.2015.60
https://doi.org/10.1007/s10664-016-9456-2
https://doi.org/10.1145/3238147.3238193
https://doi.org/10.1109/TSE.2019.2941943
https://doi.org/10.1109/TSE.2019.2941943
https://doi.org/10.1109/TSE.2019.2941943
https://doi.org/10.1109/ICSE.2012.6227202
https://doi.org/10.1109/ICSE.2017.15
https://doi.org/10.1109/ICSE.2017.15
https://doi.org/10.1109/ICSE.2017.15
https://doi.org/10.1007/s10664-016-9429-5
https://doi.org/10.1007/s10664-016-9429-5
https://doi.org/10.1007/s10664-016-9429-5

[35] S. Kabinna, C. P. Bezemer, W. Shang, M. D. Syer, A. E. Hassan, Examining the stability of logging

statements, Vol. 23, 2018. doi:10.1007/s10664-017-9518-0.

[36] A. Pecchia, M. Cinque, G. Carrozza, D. Cotroneo, Industry Practices and Event Logging: Assess-

ment of a Critical Software Development Process, Proceedings - International Conference on Software930

Engineering 2 (2015) 169–178. doi:10.1109/ICSE.2015.145.

[37] J. King, L. Williams, Log your crud: Design principles for software logging mechanisms, in: Proceed-

ings of the 2014 Symposium and Bootcamp on the Science of Security, HotSoS ’14, Association for

Computing Machinery, New York, NY, USA, 2014. doi:10.1145/2600176.2600183.

[38] W. U. Hassan, M. A. Noureddine, P. Datta, A. Bates, Omegalog: High-fidelity attack investigation935

via transparent multi-layer log analysis, Internet Society, 2020. doi:10.14722/ndss.2020.24270.

[39] S. Ma, J. Zhai, F. Wang, K. H. Lee, X. Zhang, D. Xu, {MPI}: Multiple perspective attack investigation

with semantic aware execution partitioning, in: 26th USENIX Security Symposium (USENIX Security

17), 2017, pp. 1111–1128.

[40] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, A. Bates, NoDoze: Combatting Threat Alert940

Fatigue with Automated Provenance Triage, in: Proceedings 2019 Network and Distributed System

Security Symposium, Internet Society, San Diego, CA, 2019. doi:10.14722/ndss.2019.23349.

URL https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_03B-1-3_

UlHassan_paper.pdf

[41] M. N. Hossain, S. Sheikhi, R. Sekar, Combating Dependence Explosion in Forensic Analysis Using945

Alternative Tag Propagation Semantics, in: 2020 IEEE Symposium on Security and Privacy (SP),

IEEE, San Francisco, CA, USA, 2020, pp. 1139–1155. doi:10.1109/SP40000.2020.00064.

URL https://ieeexplore.ieee.org/document/9152772/

[42] L. Yu, S. Ma, Z. Zhang, G. Tao, X. Zhang, D. Xu, V. E. Urias, H. W. Lin, G. Ciocarlie, V. Yeg-

neswaran, A. Gehani, Alchemist: Fusing application and audit logs for precise attack provenance950

without instrumentation (2021). doi:10.14722/ndss.2021.24445.

[43] Iso 8601 date and time format, https://www.iso.org/iso-8601-date-and-time-format.html, ac-

cessed: January 7, 2024.

[44] D. Yuan, S. Park, P. Huang, Y. Liu, M. M. Lee, X. Tang, Y. Zhou, S. Savage, Be conservative:

Enhancing failure diagnosis with proactive logging, Proceedings of the 10th USENIX Symposium on955

Operating Systems Design and Implementation, OSDI 2012 (2012) 293–306.

37

https://doi.org/10.1007/s10664-017-9518-0
https://doi.org/10.1109/ICSE.2015.145
https://doi.org/10.1145/2600176.2600183
https://doi.org/10.14722/ndss.2020.24270
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_03B-1-3_UlHassan_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_03B-1-3_UlHassan_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_03B-1-3_UlHassan_paper.pdf
https://doi.org/10.14722/ndss.2019.23349
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_03B-1-3_UlHassan_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_03B-1-3_UlHassan_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_03B-1-3_UlHassan_paper.pdf
https://ieeexplore.ieee.org/document/9152772/
https://ieeexplore.ieee.org/document/9152772/
https://ieeexplore.ieee.org/document/9152772/
https://doi.org/10.1109/SP40000.2020.00064
https://ieeexplore.ieee.org/document/9152772/
https://doi.org/10.14722/ndss.2021.24445
https://www.iso.org/iso-8601-date-and-time-format.html

Appendix A. Percentages of User, Network, File, Open Connection and Open File

Data in Studied Applications.

Table A.5 illustrates the distribution of logs by identifier, including user, network, and file logs,

with the corresponding number and percentage of each type of log. Additionally, it shows the960

number and percentage of log entries that include open network connections and open files.

38

Table A.5: Number and percentage of user, network, file unique identifier in studied applications

Categories Applications No. of User UID

(Percentage)

No. of Net-

work UID (Per-

centage)

No. of File UID

(Percentage)

File

managers

Files-Nautilus 0 (0) 11 (8.59) 4 (3.13)
Disks 0 (0) 2 (2.94) 5 (7.35)
Dolphin 0 (0) 2 (4.26) 3 (6.38)
nnn 0 (0) 0 (0) 7 (5.93)
recoll 0 (0) 24 (1.37) 112 (6.37)
Konqueror 0 (0) 36 (9.73) 41 (11.08)
Thunar 0 (0) 4 (3.81) 7 (6.67)

Chat

and

Communication

IceChat(Windows) 2 (0.77) 30 (11.49) 14 (5.36)
BeeBEEP 177 (15.43) 171 (14.91) 232 (20.23)
Pidgin 65 (4.92) 74 (5.61) 40 (3.03)
signal-desktop 34 (2.46) 36 (2.6) 59 (4.26)
mattermost desktop 0 (0) 28 (12.5) 3 (1.34)
Konversation 20 (7.72) 45 (17.37) 11 (4.25)
jitsi 77 (2.69) 143 (5) 12 (0.42)
wire-desktop 10 (4.72) 6 (2.83) 9 (4.25)
session-desktop 0 (0) 28 (4.6) 3 (0.49)
HexChat 18 (2.95) 44 (7.2) 28 (4.58)
Terminal- Irssi 25 (5.68) 23 (5.23) 12 (2.73)
tox 17 (3.85) 14 (3.17) 2 (0.45)

Office

Calligra 0 (0) 23 (3.3) 37 (5.3)
Xournal 0 (0) 0 (0) 11 (4.7)
SumatraPDF 0 (0) 7 (1.79) 57 (14.58)
zael 0 (0) 0 (0) 13 (36.11)
Okular 0 (0) 11 (2.53) 58 (13.36)
xpdf 0 (0) 0 (0) 94 (8.79)
ApacheOpenOffice 8 (0.05) 227 (1.49) 80 (0.53)
Scribus 0 (0) 0 (0) 25 (4.85)
Evince-DocumentViewer 51 (8.92) 17 (2.97) 37 (6.47)

Torrent and

file sharing

platform

qBittorrent 3 (0.69) 44 (10.07) 62 (14.19)
Deluge 0 (0) 5 (0.39) 52 (4.11)
transmissiongtk 3 (1.55) 28 (14.51) 32 (16.58)
frostwire 0 (0) 50 (5.31) 53 (5.63)
warpinator 0 (0) 37 (27.61) 19 (14.18)

Screen-

capture

ShareX 2 (0.85) 22 (9.32) 27 (11.44)
OBS-Studio 0 (0) 1 (0.11) 55 (5.95)
Greenshot(Windows) 0 (0) 24 (3.51) 34 (4.97)

Security or

Antivirus

Seahorse 0 (0) 0 (0) 1 (1.14)
hashcat 0 (0) 0 (0) 110 (7.24)
ClamAntiVirus(Linux) 9 (0.6) 67 (4.49) 153 (10.25)

Text

editor

Zettlr 0 (0) 0 (0) 30 (33.71)
gnome-text-editor 0 (0) 5 (4.17) 0 (0)
Vim 0 (0) 4 (2.86) 10 (7.14)
jrnl 0 (0) 0 (0) 5 (22.73)

Utilities

Console 0 (0) 0 (0) 0 (0)
Cheese 0 (0) 0 (0) 0 (0)
Guvcview 0 (0) 51 (5.66) 56 (6.22)
XDM 2 (0.38) 20 (3.83) 21 (4.02)

Media player
VLCMediaplayer 0 (0) 9 (1.98) 10 (2.2)
Kodi 297 (5.29) 506 (9.01) 442 (7.87)
musikcube 0 (0) 10 (8.2) 8 (6.56)

Window

manager

IceWM 58 (9.37) 12 (1.94) 54 (8.72)
tmux 1 (0.15) 12 (1.85) 24 (3.71)
bspwm 0 (0) 3 (1.52) 0 (0)
Qtile 0 (0) 4 (1.54) 9 (3.47)

Remote

desktop

Remotely 4 (1.56) 8 (3.13) 4 (1.56)
xrdp 43 (3.95) 88 (8.08) 98 (9)

App launcher

albert 0 (0) 2 (2.08) 7 (7.29)
launchy 0 (0) 1 (3.03) 4 (12.12)
ulauncher 0 (0) 5 (5.21) 12 (12.5)
Wox 0 (0) 6 (4) 35 (23.33)

39

Appendix B. Logs for Partitioning, Availability, Logs Configurable and Timestamped

Entries

Table B.6 provides a detailed overview of various applications and their log entries for parti-

tioning, default availability, configurable logs, and timestamped entries.965

40

Table B.6: Execution partitioning, default availability, configurable logs, and timestamped entries

Categories Applications Execution Partitioning Log available by default Log configuration Date and Time Data

File

managers

Files - Nautilus ✗ ✗ ✓ ✓

Disks ✗ ✗ ✓ ✗

Dolphin ✗ ✗ ✓ ✗

nnn ✗ ✗ ✓ ✗

recoll ✓ ✗ ✓ ✓

Konqueror ✗ ✗ ✓ ✗

Thunar ✗ ✗ ✓ ✗

Chat and

Communication

IceChat(Windows) ✓ ✓ ✓ ✗

BeeBEEP ✓ ✗ ✓ ✗

Pidgin ✓ ✗ ✓ ✗

signal-desktop ✓ ✓ ✓ ✓

mattermost desktop ✓ ✗ ✓ ✓

Konversation ✓ ✗ ✓ ✗

jitsi ✓ ✗ ✓ ✓

wire-desktop ✓ ✓ ✓ ✓

session-desktop ✓ ✗ ✓ ✓

HexChat ✗ ✗ ✓ ✓

Terminal- Irssi ✗ ✗ ✓ ✓

tox ✓ ✗ ✓ ✗

Office

Calligra ✗ ✗ ✓ ✗

Xournal++ ✗ ✗ ✓ ✓

SumatraPDF ✓ ✗ ✓ ✗

zael ✓ ✗ ✓ ✗

Okular ✗ ✗ ✓ ✗

xpdf ✗ ✗ ✗ ✗

ApacheOpenOffice ✓ ✗ ✓ ✗

Scribus ✗ ✗ ✓ ✗

Evince-DocumentViewer ✗ ✗ ✓ ✗

Torrent and file

sharing platform

qBittorrent ✓ ✗ ✓ ✓

Deluge ✗ ✗ ✓ ✓

transmissiongtk ✓ ✗ ✓ ✓

frostwire ✓ ✗ ✓ ✓

warpinator ✓ ✗ ✓ ✓

Screen-capture

ShareX ✓ ✓ ✗ ✗

OBS-Studio ✓ ✓ ✓ ✓

Greenshot(Windows) ✓ ✓ ✓ ✓

Security or

Antivirus

Seahorse ✗ ✗ ✓ ✓

hashcat ✗ ✗ ✓ ✓

ClamAntiVirus(Linux) ✓ ✗ ✓ ✓

Text editor

Zettlr ✓ ✗ ✓ ✓

gnome-text-editor ✗ ✗ ✓ ✓

Vim ✓ ✗ ✓ ✗

jrnl ✓ ✗ ✓ ✓

Utilities

Console ✗ ✗ ✓ ✗

Cheese ✗ ✗ ✓ ✓

Guvcview ✓ ✗ ✓ ✗

XDM ✗ ✗ ✗ ✗

Media player

VLC Media Player ✓ ✗ ✓ ✗

musikcube ✓ ✓ ✓ ✓

Kodi ✓ ✓ ✓ ✓

Window

manager

IceWM ✓ ✗ ✓ ✗

tmux ✓ ✗ ✓ ✓

bspwm ✓ ✗ ✓ ✗

Qtile ✗ ✓ ✓ ✓

Remote desktop
Remotely ✓ ✓ ✓ ✓

xrdp ✓ ✗ ✓ ✗

App

launcher

albert ✓ ✗ ✓ ✗

launchy ✓ ✗ ✓ ✗

ulauncher ✗ ✗ ✓ ✓

Wox ✓ ✓ ✗ ✓

TOTAL 37 11 56 31

41

Appendix C. Analysis of Timestamp Granularity in Application Logs

Table C.7 showcases the granularity of date and timestamps in logs across various applications,

offering insights into how different software systems prioritize time-precise logging.

Table C.7: Date and time granularity of logs across applications

Categories Applications Year Month Date Hour Min Second Milisecond UTC timezone

File managers
Files - Nautilus ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗

recoll ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

Chat and

Communication

signal-desktop ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

mattermost desktop ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

jitsi ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

wire-desktop ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

session-desktop ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

HexChat ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗

Terminal- Irssi ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗

Office Xournal++ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗

Torrent and file

sharing

platform

qBittorrent ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Deluge ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

transmissiongtk ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

frostwire ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

warpinator ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

Screen-capture
OBS-Studio ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗

Greenshot(Windows) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

Security or

Antivirus

Seahorse ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗

hashcat* ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

ClamAntiVirus(Linux) ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

Text editor

Zettlr ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗

gnome-text-editor ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗

jrnl ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗

Utilities Cheese ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗

Media player
musikcube ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗

Kodi ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

Window

manager

tmux** ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗

Qtile ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

Remote desktop Remotely ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

App launcher
ulauncher ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

Wox ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

TOTAL 19 20 20 31 31 31 17 4

* Indicates the application that logs the date and time solely at the start and conclusion of an action’s execution.

** Refers to the application showcasing granularity up to the microsecond level.

42

Appendix D. Presentation of logs on user actions and their level

Table D.8 presents the availability of logs on user actions and their level for different applications.970

The table includes several categories of actions on different category of applications. Each user

actions is listed with a ”Yes” or ”No” indicating whether they have the feature of logging user

actions, and the level of the log is available in bracket. Dash (–) means the application does not

provide the feature related to that user action. This table serves as a reference for understanding

the availability of log entries for various user actions across different categories of applications then975

used to referred application logs for misuse detection.

43

Table D.8: Logs availability on user actions and their level

Categories Applications Search

Query

Permission

changes

Assessing

File

Zip file ac-

tivity

File managers

Files - Nautilus No No No No
GNOME disks – – – –
Dolphin No No No No
nnn No – Yes (No

level)

Yes (No

level)
recoll Yes (Debug) – Yes (Debug) Yes (Debug)
Konqueror No No No No
Thunar No No No No

Categories Applications Login activity Shared link is

clicked

Anonymized IDs

of conversation

participant

File download

activity

Chat and

Communication

IceChat (Windows) No No Yes (In conversa-

tion log)

No

HexChat-Client Yes (No level) Yes (In conversa-

tion log)

Yes (In conversa-

tion log)

Yes (In conversa-

tion log)
Terminal- Irssi No No No No
BeeBEEP Yes (Debug) Yes (Debug) Yes (Debug) Yes (Debug)
Pidgin Yes (Notice) Yes (In conversa-

tion log)

Yes (In conversa-

tion log)

No

Signal-Desktop No No No No
tox Partial (Debug) No No Partial (Debug)
mattermost-

desktop

No Yes (Debug) Yes (In conversa-

tion log)

No

konversation No Yes (In conversa-

tion log)

Yes (In conversa-

tion log)

No

jitsi No No No No
wire-desktop Partial (Info) No No No
session-desktop Partial (Info) No Partial (Info) Partial (Warn)

Categories Applications Executing

files with

embedded

scripts

User clicking

on a URL

within a doc-

ument

Attemped

access a re-

stricted file

Executing

macros

Making

changes to

settings

Office

Scribus No – No – No
Calligra Words No No No – No
Xournal++ No – No – No
LibreOffice Writer No No No No No
SumatraPDF No No No – No
zael No No – – No
Evince No No No – No
Okular No Yes (Debug) No – No
xpdf No No No – –

Categories Applications Downloading

file shared

File start

seeding

Search query Peer connec-

tion success-

ful

Torrent and file

sharing platform

qBittorrent Yes (No Level) No – –
Deluge No No – –
transmissiongtk Yes (Info) Yes (Debug) – –
frostwire Yes (Info) No Partial (Severe) –
warpinator No – No Yes (Info)

Categories Applications Start capturing screen Saving captured screen

Screen-capture
ShareX Partial (No level) Yes (No level) - saved directory
OBS-studio Yes (Info) Yes (Info)
Greenshot No Partial (Info)

44

Table D.8 Continued: Logs availability and level

Categories Applications Login activity Accept to run quaran-

tine file

Changes in setting

Security or

Antivirus

Seahorse/Keyring No – No

hashcat – – –

ClamAntiVirus(Linux) – No No

Categories Applications Installing and using

external plugin

Clicking links through

the editor

Opening and editing

documents

Text editor

Zettlr No – The application does not

allowed to run under root

gnome-text-editor No No No

Vim Partial (No level) - dir of

plugin

No Partial (no level)

jrnl – No The application does not

allowed to run under root

Categories Applications Start application ser-

vice

Document downloaded

or saved

External plugin in-

stalled

Utilities

Console No – No

Cheese Yes (Info) No –

Guvcview Yes (No Level) Yes (No Level) –

XDM Yes (No Level) Yes (No Level) –

Categories Applications Opened file Exporting media Importing subti-

tle

Playing media Importing exter-

nal plugins

Importing exter-

nal plugins

Media player

VLC Media Player Yes (Debug) Yes (Debug) Yes (Debug) Yes (Debug) Yes (Debug) Yes (Debug)

musikcube Yes (Info) No – Yes (Info) No No

Kodi Yes (Debug) – Yes (Debug) Yes (Info) Yes (Debug) Yes (Debug)

Categories Applications Any setting changes Start new session

Window manager

IceWM Yes (Fail) Yes (Message)

tmux No Yes (Debug)

bspwm Yes (Error) No

Qtile Yes (Error) No

Categories Applications Login activity Start remote connec-

tion

Failed connection

Remote desktop
Remotely Yes (Info) No Yes (Warning)

xrdp Yes (Info) Yes (Debug) Yes (Error)

Categories Applications User search query Name of application/-

document launched

Changes in setting

App

launcher

albert Yes (Debug) No Yes (Debug)

launchy Yes (Debug) Yes (debug) No

ulauncher Partial (Debug) Yes (Info) Yes (Info)

Wox No No No

45

Appendix E. Exception Block Distribution, Logs within Blocks, and Logs with Ex-

ceptions

The table (referenced as Table E.9) displays the distribution of the number of exception blocks

in the studied applications, the number of logs within those blocks, and the number of logs that980

contain exception data within the defined logs. The percentage representation of each data is

included in parentheses.

46

Table E.9: Number of exception blocks, logs within those blocks and logs with exceptions

Categories Applications Number of

Exception

Block

Number of

Logs State-

ment in

Exception

(Percent-

age)

Number of

Logs with

Exception

Info (Per-

centage)

File managers recoll 48 9 (18.75) 0 (0.00)

Chat and

Communication

IceChat(Windows) 231 52 (22.51) 52 (100.00)

signal-desktop 395 218 (55.19) 181 (83.03)

mattermost desktop 51 38 (74.51) 32 (84.21)

jitsi 2015 1219 (60.50) 1194 (97.95)

wire-desktop 63 23 (36.51) 21 (91.30)

session-desktop 225 104 (46.22) 83 (79.81)

Office

Calligra 71 23 (32.39) 10 (43.48)

Xournal 43 23 (53.49) 17 (73.91)

ApacheOpenOffice 4410 1379 (31.27) 1027 (74.47)

Torrent and file

sharing platform

qBittorrent 50 14 (28.00) 13 (92.86)

Deluge 450 21 (4.67) 4 (19.05)

transmissiongtk 18 2 (11.11) 2 (100.00)

frostwire 1352 344 (25.44) 341 (99.13)

warpinator 83 26 (31.33) 26 (100.00)

Screen-capture
ShareX 193 112 (58.03) 109 (97.32)

Greenshot(Windows) 323 250 (77.40) 247 (98.80)

Text editor
Zettlr 97 17 (17.53) 16 (94.12)

jrnl 38 0 (0.00) 0 (0.00)

Utilities XDM 342 187 (54.68) 183 (97.86)

Media player musikcube 100 32 (32.00) 2 (6.25)

Window manager Qtile 228 30 (13.16) 0 (0.00)

Remote desktop Remotely 198 128 (64.65) 123 (96.09)

App launcher
ulauncher 52 6 (11.54) 6 (100.00)

Wox 105 56 (53.33) 56 (100.00)

47

Appendix F. Log percentages with user, network, and file data, as well as text-only

events.

The Figure F.2 provides a visual representation of the distribution of log percentages with user,985

network, and file data, as well as text-only events.

Figure F.2: The distribution of log percentages with user, network, and file data, as well as text-only events.

48

Figure F.2 Continued: The distribution of log percentages with user, network, and file data, as well as text-only

events.

49

	Introduction
	Background
	Terminology
	Standards and Guidelines
	Related Work

	Forensic Use of Application Logs
	Methodology
	Results
	Application Logs for Timeline Development
	Application Logs for Event Correlation
	Application Logs for Execution Partitioning
	Application Logs for Misuse Detection
	Application Logs for Attack Detection

	Result Summary
	Discussion
	Conclusion
	Percentages of User, Network, File, Open Connection and Open File Data in Studied Applications.
	Logs for Partitioning, Availability, Logs Configurable and Timestamped Entries
	Analysis of Timestamp Granularity in Application Logs
	Presentation of logs on user actions and their level
	Exception Block Distribution, Logs within Blocks, and Logs with Exceptions
	Log percentages with user, network, and file data, as well as text-only events.

