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Abstract—The surge in demand for cost-effective, durable
long-term archival media, coupled with density limitations of
contemporary magnetic media, has resulted in synthetic DNA
emerging as a promising new alternative. Today, the limiting
factors for DNA-based data archival are the high read/write cost
and low throughput. New motif-based DNA storage solutions
are being developed to address these limitations. However, these
new techniques often reduce cost at the expense of reliability,
as they introduce more errors during writing and reading
data. In order to deal with such errors, it is important to
design efficient pipelines that can carefully use redundancy to
mask errors without amplifying overall cost. In this paper, we
present OligoArchive-DSM (OA-DSM), an end-to-end, motif-
based, DNA storage solution that provides high error tolerance
at low read/write costs. The use of motifs as building blocks
in OA-DSM creates new challenges related to the computation
of soft information for improving error-correction decoding
performance. Thus, we present heuristics for scaling LLR that
rely on various design aspects of OA-DSM and demonstrate their
utility using simulation studies and wet lab experiments.

I. INTRODUCTION

In recent years, the growth of digital data has been expo-
nential, with the global datasphere predicted to exceed 125
Zettabytes by 2025 [1]. However, almost 80% of the data
created today is considered ”cold” or rarely accessed, and
companies need to archive it for long periods to comply with
safety, legal, and regulatory requirements [2]. Unfortunately,
traditional storage media face fundamental limitations in terms
of density scaling and durability [3], [4], making them unsuit-
able for cost-efficient, long-term data archival. As a result,
researchers have started exploring alternative media for long-
term archival preservation. One such medium that has received
a lot of attention recently due to its longevity and density is
synthetic Deoxyribo Nucleic Acid (DNA) [3], [5].

Most prior approaches to DNA data storage follow the
same basic steps. Data is written to DNA by encoding bits
into sequences of four nucleotides (nts): Adenine, Guanine,
Cytosine, and Thymine. These sequences are used to manu-
facture short DNA molecules, also referred to as oligos, using
a process called synthesis. Reading the data back involves a
process called sequencing, which generates a dataset of reads.
The reads are fed as input to a decoding pipeline that infers
the original sequences and uses them to restore back data
by converting from nts into bits. Using these aforementioned
steps, several researchers demonstrated the feasibility of using
DNA as an archival medium. The main difference in these
approaches is the type of algorithms and coding techniques
used in various stages of the read/write pipeline.

Despite these advances, high read/write costs and low
throughput have become a significant obstacle to DNA’s adop-
tion as a storage medium. Over the past few years, researchers

have proposed new motif-based approaches to DNA data
storage [6], [7] as a potential solution. Instead of using nts
(A,C,G,T) as building blocks, these solutions use motifs, which
are short oligonucleotide sequences that are drawn from a
fixed library, as building blocks for assembling longer oligos.
Using motifs as building blocks, one can scale logical density
(the number of bits written per synthesis cycle) by storing
log2(M) data bits per synthesis cycle [7]. The use of a fixed
library of motifs similar to a typesetting press can simplify
miniaturization and automation [8]. Further, new chemical
synthesis methods (enzymatic assembly/ligation [9]) can be
used to assemble oligos from motifs. While all these aspects
are expected to contribute to reduce write cost and improving
throughput, they do so at the expense of increased error rate
in the synthesized oligos. Thus, effective error management is
important for motif-based DNA storage to realize its potential.

In this work, we present our ongoing work on
OligoArchive-DSM (OA-DSM), an end-to-end motif-based
DNA storage system that significantly reduces read/write costs
compared to SOTA approaches [10], [11], [12]. OA-DSM
uses a novel, columnar encoding method for DNA storage
together with an integrated consensus and decoding technique
that leverages the motif structure and columnar organization
of oligos to reduce read and write cost. In particular, we
focus on the use of soft information for improving error
correction capacity of OA-DSM. OA-DSM uses large-block-
length, low-density parity-check (LDPC) codes to provide
resilience against DNA storage errors. Prior work [10] in
non-motif-based DNA storage has demonstrated that provid-
ing soft information, such as log-likelihood ratio (LLR), as
input to LDPC decoders can substantially improve their error-
correction capability. However, as we describe later, the use
of motifs as building blocks and the columnar organization in
OA-DSM requires a completely different approach to calculate
soft information. In this work, we present a few estimation
techniques, empirically validate them using real-world wet lab
experiments.

II. SYSTEM MODEL

As mentioned earlier, state-of-the-art (SOTA) pipelines to
encode data on DNA follow the same basic steps, although
they differ in their implementation. Data is written to DNA by
encoding bits into sequences of nts. This encoding is internally
a two-step process. First, data is grouped into blocks of bits
that are fed as input to an error-control coding module to
produce parity bits. The data and parity bits together form
a unit of recovery. The bits belonging to the block are mapped
to nts. Due to limitations in synthesizing DNA, the length of
a single DNA strand is limited to a few hundred nts at best.
Thus, each block of data and parity is converted into a set of
DNA sequences. These sequences are synthesized chemically
to form actual DNA strands, also known as oligos.
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Fig. 1. OA-DSM data writing pipeline (top) showing binary to DNA encoding path, and long-term DNA storage in an encapsulated container like Imagene
DNAShell™. OA-DSM reading pipeline (bottom) showing DNA to binary decoding path. The blocks in red are unique to OA-DSM (versus SOTA).

Reading the data back involves sequencing the DNA to
produce reads. In the ideal case, sequencing would produce
one read per oligo created during the writing phase. However,
due to errors in sequencing and synthesis, reads are noisy
duplicates of the starting sequences as they can contain sub-
stitution, insertion, and deletion errors. The number of reads
corresponding to each oligo (also called coverage) can also
vary by an order of magnitude, with some oligos being covered
by thousands of reads, and others completely missing. In order
to recover the original data from this noisy dataset, a consensus
step is performed first to infer original sequences from noisy
reads. The inferred sequences produced by the consensus step
are then passed to the error-control decoder for conversion
back from nts into bits. It is important to note here that
these consensus sequences need not be error-free, accurate
reproductions of original oligos. It is the job of the error-
control decoder to use the additional parity bits to recover
the original input data despite these errors. Thus, in all SOTA
techniques, the decoding and consensus stages are independent
of each other. This is an inherent consequence of how oligos
are encoded. When a block of data is mapped to a group of
oligos, that group becomes a unit of recovery that must be
reassembled entirely (through consensus) before decoding.

OA-DSM, differs from the SOTA approaches by using
a library of motifs as building blocks rather than individual
nts. OA-DSM uses the motif library to perform encoding and
decoding of data column-by-column instead of oligo by oligo.
The principal advantage of this approach, as we demonstrate
in subsequent sections, is that it enables the integration of
decoding and consensus into a single step, where the error-
correction provided by decoding improves consensus accuracy,
which, in turn, increases the decoding performances, thereby
producing a synergistic effect.
A. Write Pipeline: Motifs and Columnar Encoding

The top half of Figure 1 shows the OA-DSM data writing
pipeline. The input to the write pipeline is a stream of
bits. Thus, any binary file can be stored using this pipeline.
OA-DSM uses large-block-length regular LDPC for error
resilience. Thus, the input data is grouped into blocks of size
256,000 bits and LDPC-encoded to create a parity-extended
data block with configurable redundancy. The encoded block
is fed as input to the DSM-oligo-encoder which turns bits into
oligos. While SOTA approaches design each oligo as a random

collection of nts, the DSM-oligo-encoder designs oligos using
motifs. Each motif is itself a short oligo that obeys all the
biological constraints enforced by synthesis and sequencing.
We use motifs rather than single nts as building blocks because,
as we will see later in Section II-B, integration of decoding
and consensus relies on alignment which cannot be done over
single nts.

DSM-oligo-encoder converts bits into motifs by using an
associative array with a 30-bit integer key and a 16 nt motif
value. The encoder generates this array by generating all
possible motifs of length 16 nt and eliminating motifs that do
not meet certain biological criteria (up to two homopolymer
repeats (AA,CC,GG, or TT) and GC content in the range of
0.25 to 0.75.) With these constraints, the encoder can use
1,405,798,178 valid motifs out of 416 possible motifs. By
mapping each motif to an integer in the range of 0 to 230, the
encoder can encode 30-bits of data per motif. Thus, at the motif
level, the encoding density is 1.875 bits/nt. Note that by using
this associative array, we lose direct mapping between bits and
nts. Instead, a group of 30 bits is mapped to a predefined set of
nts. As described in Section II-C, this mapping makes SOTA
approaches for computing LLR unsuitable in OA-DSM.
B. Read Pipeline: Sequence Alignment and Consensus

The bottom half of Figure 1 shows the OA-DSM read
pipeline. Data stored in DNA is read back by sequencing
the DNA to produce reads. As each oligo can be covered by
multiple reads, the first step in decoding is clustering [13], [14]
to separate the reads into a set of clusters, with each cluster
corresponding to some unknown original oligo. After the
clustering stage, other SOTA methods apply consensus in each
cluster followed by decoding in two separate phases. In OA-
DSM, we exploit the motif design and columnar layout of
oligos to iteratively perform consensus and decoding in an in-
tegrated fashion. Unlike other approaches, OA-DSM processes
the reads one column at a time. Thus, the first step is columnar
consensus using a bit-wise majority algorithm [14], which
takes as input the set of reads and produces one column of
motifs. These motifs are fed to the DSM-oligo-decoder which
maps the motifs into their 30-bit values using the same array
of motifs used during encoding, which does not need to be
transmitted but can be generated prior to decoding. Note here
that despite consensus, the inferred motifs can still have errors.
These wrong motifs will result in wrong 30-bit values. These



errors are fixed by the standard BP LDPC-decoder, which takes
as input the 256,000 bits corresponding to one LDPC block
and produces as output the error-corrected input bits.

SOTA techniques do not employ the error-corrected input
bits during decoding. In contrast, OA-DSM takes advantage of
these bits to increase accuracy, as seen in the lower portion
of Figure 1. The error-corrected, LDPC-decoder’s bits are
encoded again to create a column of correct motifs. Reads are
realigned using the appropriate column of motifs so that the
subsequent round of columnar decoding begins at the correct
offset. This realignment’s rationale is based on the following.
Due to a difference in length, an insertion or deletion error in
a consensus motif will not only damage that motif but also all
downstream motifs. For instance, if we look at the example in
Figure 1, we see a deletion error in read A − TGATCTG..
which should have been ACTGATCTG.... This results in the
first motif being incorrectly interpreted as ATGA (instead of
ACTG, and the second motif as TCTG (instead of ATCT ).
Thus, an error early in consensus keeps propagating. Without
a knowledge of the correct motif, there is no way to fix this
error. But in OA-DSM, by reencoding the error-corrected bits,
we get the correct motifs. By aligning these motifs against the
reads, we can ensure that consensus errors do not propagate. In
the example shown in the red block of Figure 1, the alignment
enables us to identify the precise starting position of the second
motif, which can now be correctly interpreted as ATCT . Note
here that such realignment is only possible because we use
motifs, as two sequences can be aligned accurately only if
they are long enough to identify similar subsequences. Thus,
columnar layout without motifs, or with just nts, would not
make realignment possible. Similarly, integrating consensus
and decoding is possible only because of the columnar layout,
as the SOTA layout that spreads a LDPC block across several
oligos cannot provide incremental reconstruction.

C. Improving OA-DSM with Soft Information

The error correction capabilities of LDPC code can be
improved by feeding the LDPC decoder with soft information
such as the log-likelihood ratio (LLR). However, the calcula-
tion of LLR depends on the channel model, which presents
a challenge for DNA storage channels due to the lack of an
exact channel model with a specific distribution. To address
this issue, Chandak et al. [10] proposed a simplified method
for LLR computation that is defined under the assumption
that DNA storage mimics a binary symmetric channel with
error probability epsilon and an ideal Poisson random sampling
model. Under this assumption, the transition probability for the
channel is given as:

p ((k0, k1) |0) =
e−λλk0,k1

(k0, k1)!

(
k0 + k1

k0

)
(1− ϵ)

k0 ϵk1 (1)

p ((k0, k1) |1) =
e−λλk0,k1

(k0, k1)!

(
k0 + k1

k1

)
(1− ϵ)

k1 ϵk0 (2)

where λ is the ratio between reading cost and writing cost,
the input of the channel is a bit, the output is a tuple (k0, k1)
where kb is the number of times that the bit is read as b. From
this, the LLR is computed as:

log
p ((k0, k1) |0)
p ((k0, k1) |1)

= (k0 − k1) log
1− ϵ

ϵ
(3)

Chandak et al. [10] use nts as the building blocks of
encoding with a direct mapping between two bits and four
nts (A-00, C-01, G-10, T-11). During the consensus stage
of the read pipeline, they perform read clustering to group
similar reads into buckets such that each bucket corresponds
to an original sequence. Then, for each position, they count the
number of occurrences of nts, and use it to directly determine
k0 and k1 values for the consensus LLR. For example, to
determine the LLR for the first bit, the count of As and Cs
is used as k0 as they would result in first bit being 0, and
the count Gs and Ts is used as k1 as they would result in
first bit being 1. Chandak et al. [10] showed that such an
LLR computation improves the read/write cost of DNA data
storage, as it allowed LDPC decoders to tolerate more errors
while using fewer parity bits.

Unfortunately, this approach cannot be directly applied to
OA-DSM; instead of mapping two bits to 1 nt like Chandak et
al. [10], OA-DSM maps 30 bits to 16 nts using an associative
array. Thus, using a per-position nt count to compute per-bit
k0 and k1 is not correct for OA-DSM. The straightforward
extension of Chandak et al. [10]’s approach to motif design
is to extract motifs from the reads, identify which motifs
contribute to zero and one bits for each position, and use
their count for k0 and k1. Unfortunately, this approach does
not work well due to two problems. First, it causes error
amplification. When nts are used as building blocks, an error
in a single nt will result in the corresponding two bits being
wrong. However, with OA-DSM, a single error can result in
a completely different 30-bit pattern compared to the correct
motif. Thus, using the wrong motif to derive a count of zeroes
and ones will result in poor LLR. Second, this approach is
slow, as it requires tens of billions of array lookups to convert
each motif in each read into its bit sequence.

Given these issues, we implemented three heuristic ap-
proaches in OA-DSM for approximating LLR in a scalable
fashion. Our first heuristic exploits the fact that we apply a
consensus procedure to infer each motif in the read pipeline.
When each inferred motif is converted back into bits, we apply
Equation 3 for each bit, where the difference α = k0 − k1, is
set to 1 or -1. The intuition behind this is that we view the
majority consensus output as the only bits emerging out of the
DNA storage channel; a zero bit results in k0 being 1 and k1
being 0, and a one bit results in k1 being 0 and k0 being 1.
Thus, α is ±1. Although this definition works in practice (as
we will show in Section III), it does not provide any additional
information about the reliability of the bits given by consensus.

Our second heuristic extends the first one by taking each
consensus motif, counting the number of reads that exactly
with it, and using the count as α. The intuition behind this
heuristic is that in the general case, with sufficient coverage,
the count of “correct” motifs will be higher than the count of
wrong motifs. In such a case, the number of correct motifs can
be used as k0 for a zero bit, and k1 for a one bit. As majority
consensus will identify the correct motif, we can get this count
by comparing the consensus motif with every read. Thus, α is
±(exact match count). The drawback of this method is that it
requires motifs in reads to exactly match the consensus motif.
However, in cases of high error rates, it is possible that the
consensus produces the correct motif, but the consensus result
does not match even a single read.
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Fig. 2. Figure shows the minimum coverage required to guarantee 100%
data recovery of various LLR methods under a range of error rates.

Our third heuristic extends the second one by exploiting the
fact that OA-DSM uses a bitwise majority consensus algorithm
that internally aligns motifs to compute consensus motifs.
Alignment is done to deal with insertion and deletion errors
that can make motifs in a read longer or shorter than the origi-
nal motif. Such an alignment also produces the edit distance, or
Levenshtein distance, between motifs. Thus, our third heuristic
uses this information by changing the exact match count to
the count of motifs having an edit distance lower or equal to a
configurable threshold. We set this threshold to 15% to tolerate
a sufficiently high error rate.

III. EVALUATION

In this section, we present the experimental results to
highlight the effectiveness of using soft information in OA-
DSM. First, we compare the performance of our columnar
decoding with respect to various LLR heuristics. Then, we
validate the end-to-end encoding and decoding pipeline by
presenting the results of our wet lab experiment. Finally, we
compare OA-DSM to other SOTA approaches with respect to
read/write costs. All experiments were conducted on a server
equipped with a 12-core Intel (R) CPU and 128GB of RAM.

To compare the heuristically defined LLRs in Section II-C,
we encoded a binary file of size 609KB (a relational database
generated by using TPC-H DBGEN utility) into 22,188 oligos
of 160 nts each. Using a custom simulator, we constructed
from this set of oligos multiple simulated reads datasets, by
uniformly injecting errors with an error rate ranging from
1% to 15% and varying coverage levels. For each simulated
read dataset and heuristic LLR, we conducted multiple runs to
determine which LLR approach requires the smallest amount
of coverage to decode the entire file. Figure 2 reports the
minimum coverage that our OA-DSM decoder needs to recover
data for different types of errors, depending on the LLR it uses.
As can be seen, LLR having α = ±1 is capable of decoding
data. At low error rates, it performs as well as other methods.
But at high error rates, it is able to recover data only at a
much higher coverage. The exact match LLR (shown as α ̸= 1
ED=0) marginally outperforms the α = ±1 LLR for 9% and
12% error rate, but underperforms at 15%. This proves our
intuition that at high error rates exact matches might not be
found; at 15% error rate, there is an error in every single motif.
While consensus can still recover the original motif, the lack
of matches would drive the LLR to zero, resulting in poor
performance. On the other hand, the LLR using alignment-
derived edit distance (shown as α ̸= 1, ED ≤ 2) outperforms
other LLRs.

OA-DSM LDPC-30% RS+RLL Fountain+RS
Read Cost 2.10 4.46 4.50 6.8
Write Cost 0.70 0.78 0.92 0.65

TABLE I. OA-DSM VS. SOTA RD/WT COSTS: LDPC [10],
RS-RL [11], FOUNTAIN+RS [12]

Having identified the LLR that allows for the lowest
coverage in decoding, we validated OA-DSM (with α ̸= 1,
ED ≤ 2 LLR) using a real wet-lab experiment. In this wet-
lab experiment, we encoded a 1.2MB binary file representing
a compressed relational database archive with 30% LDPC
redundancy to generate 44376 oligos, with each oligo having
a length of 160 nts. Twist Biosciences synthesized the oligos,
which we sequenced using the Oxford Nanopore PromethION
platform, generating approximately 43 million noisy reads. We
ran the pipeline with all 43 million reads, corresponding to an
average coverage of 951×, and were able to fully reconstruct
the original data. In order to prove the OA-DSM’s capability
to handle lower coverage, we subsampled 200K reads from
the original dataset, generating a new dataset with an average
coverage of 4×. We found that OA-DSM was able to perform
full recovery of the original data despite nearly 3500 oligos
being completely missing in the subsampled dataset, that is,
not covered by any read. With our wetlab experiment, we
validated 4× as the least coverage OA-DSM can manage, as
further reduction in coverage resulted in data loss.

We conclude this section by presenting the comparison be-
tween OA-DSM and SOTA methods, including LDPC coding
by S. Chandak et al. [10], large-block Reed-Solomon coding
by Organick et al. [11], and fountain codes by Erlich et al. [12],
in terms of reading and writing costs. Writing cost is defined
as #nts−in−oligos

#bits , where the numerator is the product of the
number of encoding oligos by their length and the denominator
is the input file size expressed in bits. Similarly, reading cost
is defined as #nts−in−reads

#bits , i.e., as the ratio between the sum
total of all read lengths and the input size in bits. The higher
the redundancy and encoding overhead, the higher the write
cost, while the higher the coverage required, the higher the read
cost. Table 1 compares the read/write cost for OA-DSM and
other SOTA approaches. We computed the costs for OA-DSM
using the values from the wet-lab experiment. Table 1 shows
that OA-DSM outperforms other SOTA methods substantially
in terms of read cost. The write cost of OA-DSM is slightly
higher than that of fountain codes but significantly lower than
large-block Reed-Solomon coding. The focus of this work was
on soft information for improving decoding performance, and
hence the read cost. OA-DSM can achieve further reductions in
write cost by reducing redundancy and scaling the motif set to
use more motifs. We leave open these optimizations to future
work. These results suggest that OA-DSM can achieve a good
balance between read and write costs, making it a promising
solution for efficient DNA data storage.

IV. CONCLUSION

In this work, we presented our ongoing work on OA-DSM–
a motif-based DNA storage system. Considering the mismatch
of motif-based design used by OA-DSM with nucleotide-based
LLR computation proposed by SOTA methods, we proposed
three strategies for computing LLR based on various design
aspects of OA-DSM. Using results from simulation studies and
real-world wet lab experiments, we demonstrated the ability of
soft information to reduce read/write costs in OA-DSM.
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