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Abstract

A new approach for the analysis of the propagation of roundoff errors in recursive
algorithms is presented. This approach is based on the concept of backward consistency.
In general, this concept leads to a decomposition of the state space of the algorithm,
and in fact, to a manifold. This manifold is the set of state values that are backward
consistent. Perturbations within the manifold can be interpreted as resulting from per-
turbations on the input data. Hence, the error propagation on the manifold corresponds
exactly (without averaging or even linearization) to the propagation of the effect of a
perturbation of the input data at some point in time on the state of the algorithm at
future times.

We apply these ideas to the Kalman filter and its various derivatives. In particular,
we consider the conventional Kalman filter, some minor variations of it, and its square-
root forms. Next we consider the Chandrasekhar equations, which apply to time-invariant
state-space models. Recursive Least-Squares (RLS) parameter estimation is a special case
of Kalman filtering, and hence the previous results also apply to the RLS algorithms.
We shall furthermore consider in detail two groups of fast RLS algorithms: the Fast
Transversal Filter (FTF) algorithms and the Fast Lattice/Fast QR (FLA/FQR) RLS

algorithms.
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1 Introduction

In numerical analysis, the method of backward error analysis is a well-established pro-
cedure [1]. In this method, the computed solution to a problem (which differs from the
exact solution due to roundoff errors in the computations) is interpreted as the exact
solution of a perturbed problem. A method for solving the problem is called (backward)
stable in this context if the perturbed problem is close to the original problem.

However, if the problem has a specific structure (consider e.g. the solution of a system
of equations in which the matrix of coefficients has a specific structure), then a difficulty
may arise if one requires the perturbed problem in the backwards association scheme to
belong to the same class of structured problems as the original problem. Indeed, the
method of solution may lead to a computed solution that cannot be interpreted as the
exact solution to a perturbed problem belonging to the given class of structured problems.
We shall call an algorithm for solving the given structured problem backward consistent
if it always leads to a computed solution that can be interpreted as the solution of a
perturbed problem with the required structure [2],[3],[4]. Once backward consistency is
established, one can check whether the algorithm is (backward) stable. If it is, then
the algorithm is called strongly stable in a recently introduced nomenclature by Bunch
[5]. However, we shall concentrate on the consistency part and not on the stability part.
Though the consistency issue (it does not appear to have a specific name in the numerical
analysis literature) has been the subject of quite a bit of discussion in numerical analysis
circles, its application (which we propose here) to recursive algorithms such as the Kalman
filter appears to be even more enlightening.

Reference [6] represents perhaps the most up-to-date study of round-off errors in
various Kalman filtering algorithms. However, there are several aspects in that work
that one may consider as treated unsatisfactorily. We focus here specifically on the
propagation of the numerical errors: we assume that from a certain time instant onwards
no more round-off errors are made and observe how the effect of the accumulated errors

evolves in time from then onwards. One approximation that is used in [6] to carry out the



analysis of the error propagation is linearization: only the error terms of first order are
kept. Furthermore, some (statistical) averaging step is introduced, effectively narrowing
the analysis to only the mean of the errors (in a statistical description). One outcome
from the analysis in [6] is that the so-called square-root forms of the Kalman filter would
have little if any advantage over the conventional form in that the level of the accumulated
errors in both algorithms would be comparable. This may be so, after linearization, if
the covariance matrix is well bounded away from singularity. This conclusion is a bit
unsatisfactory, considering the availability of a wealth of practical evidence that indicates
the superior numerical behavior of the square-root algorithms in actual implementations
(see e.g. [7]). The backward consistency point of view appears to shed quite a bit of light
on this issue.

A special fast type of Kalman filter algorithm is given by the so-called Chandrasekhar
equations [8]. The analysis of this algorithm in [6] is quite approximate.

When we limit the state estimation problem to the problem of estimating constant
parameters, the Kalman filter reduces to the RLS algorithm. The Chandrasekhar equa-
tions reduce to the Fast Transversal Filter algorithm, a fast RLS algorithm (applicable
to the case of a Toeplitz data matrix). The propagation of numerical errors in the FTF
algorithm has been analyzed in [9] using linearization and averaging techniques and some
other approximations. It was shown in [9] how in the original algorithm numerical errors
diverge, and how the introduction of computational redundancies and a certain feedback
mechanism allow for the stabilization of the error propagation dynamics. Though this
analysis has revealed the key mechanisms in the error propagation, it does not tell the
complete story (such as the influence of a nonstationary input signal).

Finally, we shall consider the second class of fast RLS algorithms, namely the FLA /FQR
algorithms. Especially for the FQR algorithms, the backward consistency approach leads
to a very simple but complete analysis of the error propagation dynamics. This last ap-
plication, which was first considered in [10], provided a breakthrough in a problem that

appears very hard to tackle using the previously existing techniques.



The notation we shall use below will vary according to established practices or specific
references for the different algorithms considered, except for the time index, which will
be denoted as k, and the system order index which will be denoted as n (intermediate

orders) or N (largest order).

2 Backward Consistency

2.1 The Classical Approach

A recursive algorithm can be viewed as a nonlinear discrete-time system of the form

O(k) = f(O(k=1),((k)) (1)

where O(k) (written as a row vector) is the set of state variables of the algorithm, and (k)
collects the new input data that are used at time k. In a finite-precision implementation,

the actual system propagates a perturbed state (:)(k) and can be written as

~

O(k) = f(O(k=1),¢(k)) + V(k) (2)

where V (k) is the round-off error introduced in the computations at time k. From (1)

and (2), one can deduce the nonlinear system for the accumulated errors on the state

variables, AO(k) = O(k)—0O(k) :

O(k) = F(O(k=1),¢(k)) (3)
AO(k) = f(O(k—1)+AO(k—1), (k) — O(k) + V(k) . (4)

Assuming the numerical errors to be small, we can linearize the implemented system (2)
around the infinite-precision trajectory (3), which leads us to replace (4) by (neglecting

higher-order terms):

AO(k) = AB(k—1)F (k) + V(k) (5)

where F'(k) = of . One often adds to this a second step, in which the linear
90 lo=0(k-1)

time-varying system of (5) is transformed into a linear time-invariant system by applying
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an averaging technique. One such technique goes as follows [11]. If the data ((.) are
considered as stochastic variables then the process {AO(.)} converges weakly, provided

certain conditions are satisfied, to the process Z(.) which satisfies
=(k) = Z(k—1) EF(k)+ V(k) (6)

when F(.) converges to a series of identity matrices. So the error propagation dynamics
can be described via the eigenvalues of the fixed matrix E F'(k) (in the stationary case). A
complete study of the roundoff errors requires besides the study of the error propagation
(the initial-state response of the AG(.) system) also the study of the error generation
(properties of V(.)) and the error accumulation (how do errors generated at different

time instants interact to form the compounded error AO(.)) [12].

2.2 Relation to Concepts from Numerical Analysis

We may comment on the relation between the notion of (forward) stability as used by
numerical analysts, and the stability of the roundoff error system viewed as a discrete-
time dynamical system above. When considering forward stability, numerical analysts
refer to the size of the perturbation of the computed quantities (as a result of roundoff
errors in the computations). In the approach outlined above, stability of the roundoff
errors is about the stability of the dynamical system (4) that describes the propagation
of the roundoff errors. At this point, the two stability notions appear to be unrelated.
However, a proper quantity to study in the recursive algorithm approach above, but from
a numerical analysis point of view, would be the (infinity) norm of the complete roundoff
error trajectory AO(.). Then it is clear that this norm will be finite (stable from a numer-
ical analysis point of view) if and only if (with weak assumptions) the dynamical system
(4) is Bounded-Input-Bounded-Output (BIBO) stable. The instantaneously generated
roundoff errors V(.) entering the dynamical system (4) can be modeled as determinis-
tic or stochastic quantities (numerical analysts stick almost exclusively to deterministic

descriptions though). In a deterministic treatment, the term bounded in the BIBO no-



tion refers to actually bounded roundoff errors. In a stochastic treatment, it is common
practice (in the analysis of roundoff errors in digital filters [13]) to assume that the V(.)
form a sequence of independent random variables (this is one of the weak assumptions
mentioned above). In a stochastic context, bounded refers to bounded variance. In either
of the deterministic or stochastic contexts, the algorithm implementation is assumed to
lead to bounded input V(.). Note that this deterministic/stochastic consideration for
V(.) is independent from a possible deterministic/stochastic point of view for the esti-
mation problem treated recursively by the algorithm (1) (the averaging approximation
mentioned above assumes a stochastic description of the quantities appearing in the es-
timation problem). Returning to the stability issue, we conclude that the algorithm
implementation becomes more stable in a numerical analysis sense as the bound on the

input V(.) becomes smaller, and as the modes of the dynamical system (4) decay faster.

2.3 Error Propagation in Backward Consistent Algorithms

Here, we propose an alternative approach to the classical linearization and averaging
strategy outline above. In general, the problem that the recursive algorithm is solving
belongs to a certain class of problems with a well-defined structure. Consider the set of
values for the state variables which can be interpreted as being the solution to a problem
with the required structure. In general, the structure requirement will lead to equality
as well as inequality constraints. The equality constraints can be written as M (©) = 0,
i.e. the state should lie on a certain manifold M (see Fig. 1). The inequality constraints
will lead in fact to the consideration of only a subset S of the manifold. In the Kalman
filtering context, the inequality constraints result from the positive definiteness of the
covariance matrix of the vector of estimated quantities, or related properties. One can
in principle consider an extension of the set & from M to the complete state space.
However, only the part of S within M matters. So the algorithm state is said to result

from a problem with the required structure if it satisfies

O e MNnS . (7)



We shall in general only consider the interior of S, since the roundoff errors may behave
differently for degenerate (singular) cases (situated on the boundary of S).

In order to study the local dynamics of the propagation of roundoff errors, we as-
sume that roundoff errors have been made up to time k£ and that the computations
are exact from then onwards. A perturbation of the state O(k) that remains on the
manifold can be interpreted as the exact solution to a problem with perturbed data
{O(=1),¢(0),...,((k)}. In fact, under some conditions, this perturbation can be re-
duced to a perturbation on ©(—1) only. Or if not, it suffices to consider O(k) as the
(perturbed) initial condition of an algorithm that operates free of error after time k. So
the propagation of roundoff errors that lead to a perturbation of the state within the
manifold can be analyzed through the dynamics of a perturbation of the initial condi-
tions on the state trajectory in an infinite-precision implementation of the algorithm.
Thus for a backward consistent algorithm implementation, the study of the dynamics of
the (numerical) error system (4) reduces to the study of the convergence from arbitrary
initial conditions of the (estimation) error system associated with the algorithm (3) itself.

This local analysis holds for the linearized system, for which superposition can be
used to describe the accumulated errors AG(.). The results thus obtained will hold if the
accumulated errors are sufficiently small so that higher-order terms may be neglected. If
general, the roundoff errors will perturb the dynamics with which the accumulated errors
up to a certain time instant will decay into the future. One way to obtain global results
is the following. If the decay from perturbed initial conditions can be bounded above
uniformly (in the allowed perturbations on the data ©(—1), {(.)) by a decaying function
that can be considered as the impulse response of a BIBO system, then the error system

(4) is globally stable.

2.4 Example: the LMS Algorithm

The celebrated Least-Mean-Square (LMS) algorithm [14] can be considered as a sim-

plification of the Kalman filter for the parameter (impulse response of an FIR filter)



estimation problem. The algorithm updates the filter estimate Wy, according to (see
[15] for notation)

(k) = dk)+ Wyp_1Xn(k)

Wiy = Wipor — pen(B)XF (k)
The state of the algorithm is clearly ©(k) = W4 and the data are ¢(k) = {d(k), Xx (k).

(8)

In general, there are no constraints on Wy g for it to be a valid filter estimate. Hence
M N S is the complete state space here. So the roundoff error system associated with
the LMS algorithm is stable if and only if the algorithm converges! The convergence in
the presence of instantaneous roundoff errors V(.) on Wy can be interpreted as the dual
problem of tracking optimal parameters W5, that move around according to a random
walk: W5 o = W5 + V(k) [14],[16] (leading to a perturbation of the desired-response
signal d(.)). The presence of such variations of the optimal parameters does not modify
the convergence properties of the LMS algorithm (the convergence dynamics are uniform
in perturbations on d(.), hence the error system is globally stable when the algorithm
converges). But such perturbations make the algorithm converge to a steady state with
increased variance for the parameter estimates Wy and the error signal €5 (k) (BIBO
stability in a stochastic sense). See [14],[16] for expressions for these variance increases,

given the variance of V(.) (assumed stationary).

2.5 Decomposition of the Error System in the General Case

An algorithm is backward consistent if the computed state remains on the manifold. In a
finite-precision environment, this will usually require that the manifold M is the complete
state space. In general, the manifold is nontrivial and the study of the propagation of
roundoff error will be more complicated than in the backward consistent case described
above. However, the manifold allows us to introduce a simplification in the form of two
decoupled subsystems as we shall explain now.

Whenever the manifold M is nontrivial, there exists a parameterization ©,, of © € M

with fewer parameters than ©. This parameterization ©,, is minimal if it is not subject



to any equality constraints and contains enough degrees of freedom to represent any point

on M. So there exists a function hyg such that
VO e MNS, 30, : O =hm(0,,) . (9)

Thus in order to study the error propagation on M, we may well consider the error
propagation for the minimal parameterization ©,,. We apply linearization to find the
local error dynamics. The component of the error AG(k) along M (manifold &~ tangent

subspace) is given by:

AnO(k) = AO(k) Py = AO,, (k) M7 (k) (10)

-1
where M (k) = ag—g‘ and Px denotes the projection matrix onto the column space

0=0(k)
of X. So the (linearized) error propagation on M is governed by the system matrix

Pargeesy F(R) Pargiy - (11)

Note that the product of consecutive instances of the matrix in (11) are a pre and

postmultiplication away from a corresponding product of the matrix
M (k=1)F(kE)M™* (k) (12)

where M* is the Hermitian transpose of the left inverse of M. The linearized error prop-
agation dynamics on M are described by (11) or (12) and correspond to the linearized
dynamics of the effect of a perturbation of the initial conditions of the estimation prob-
lem. Global error propagation within M also corresponds with the global behavior of
perturbations on the data ©(—1), ((.).

Now let us write the equality constraints specifying the manifold compactly as M (©) =

0. Then the normal subspace of M locally at ©(k) can be characterized as

AO(E)N(k) =0, where NP (k) = oM . (13)
90 0=0(k)
Using the normalized version of M (k) and N(k) (e.g. M = M(M" M)=H/2)  we can form

a unitary matrix ¢ = [W M} , ®®" = ]. Introducing ® into the error propagation
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equation AO(k) = AO(k—1)F(k), we obtain
[AO(K)N(k) AOK)M(K)] = [AOGk—1)N(k—1) AO(k—1)M(k—1)]

N (k=) F(EN(k) N (k—1)F(k)M(k) (14)

0 M (k—1)F(k)M(k)

X

which describes the joint reparameterized system of tangential and normal error compo-
nents

AuO(k) = AO(k)Pygy = AO(RM(k)M" (k) )
H
(k)

AnO(k) = AO(k)Pyg = AO(k)N(k)N
see Fig. 2. The main thing to note is that we can put a priori MH(k—l)F(k)N(k) =0
for the simple reason that a ©(k) on M remains on M ! (reminder: the study of
the local error propagation assumes that no further errors are introduced after an initial
perturbation). So the decomposition of the error along tangential and normal components
leads to two subsystems that are coupled only in a one-way sense (and hence can be
investigated separately). The algorithm is backward consistent on the manifold and
hence the results from the backward consistent case apply to the tangential subsystem.
The error propagation of the normal subsystem remains to be investigated then (e.g.
using the conventional linearization approach described above). Global stability can be
obtained if the manifold can be shown to be a global attractor and a uniform rate of
convergence towards M can be exhibited. We shall illustrate an application of the above
decomposition in the next section, but we shall not carry out a systematic investigation
of the normal subsystem in the applications considered below, as this would lead us too
far.

It may happen that an algorithm is not backward consistent at a certain level of
structure, but that it is backward consistent at a lower (less restrictive) level of structure.
This provides a means of investigating (part of) the normal subsystem using the same
techniques as for the tangential subsystem. We shall illustrate this below. To summarize,
the concept of backward consistency may be introduced to allow for a decomposition of

the error propagation problem into two smaller problems. For the analysis of one of these,
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the backward consistent subsystem, a different stochastic setting can be exploited, namely
the one of the estimation problem itself, which is different from a possible stochastic

characterization of the roundoff errors.

3 Conventional Kalman Filters

Consider the discrete-time linear state-space model for k£ > 0

1

wy
Wi Qk5k1 0 0 0
Tpy1 = Frar + Grwg ) vy
with E| o, = 0 RSy 0 0] . (16)
yr = Hpxp+oy 7o
o 0 0 I, 0
1
The case E wkv; = (6 can be handled as well. The state estimate 7 = Zp_q is
updated according to
€ = yp— HpTp
fk—l—l == kak—I-[(kRzeék (17>

with 29 =0, K= FyPiH,, P.= Py = E 3.3,

and the covariance matrix Py is updated according to the Riccati equation which will be

discussed in more detail below.

3.1 Global Stability of Backward Consistent Implementations

The state ©(k) of the conventional Kalman filter (CKF) consists of the pair Z;, P (we
are talking about two state-space models now: one in z; for the estimation problem
and one in O(k) for the estimation algorithm). The input to the algorithm is ((k) =
{Fy,Gr, Hp,Qr, R, yr}. Note that T depends on P but not vice versa. Hence, the
error propagation in both subsystems may be analyzed separately. The consistency
requirements are P, = P,; > 0. There are no constraints on the zj part of @(k). Hence

this part is always backward consistent and numerical errors on 7, propagate in a stable
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fashion whenever the Kalman filter converges (sufficiently fast), as in the LMS algorithm.

The state estimate update in (17) can be rewritten as
ik—l—l = (I)kfk—I-[(kRzeylm (I)k = Fk —[X’kRzer (18)

which renders explicit the crucial role of the closed-loop system matrix ®; of which the

long term behavior is described by the state transition matrix
G =Py 1Py 9 . (19)
In particular, the effect on zj of a perturbation on the initial condition is given by
Az = Py 0AZg . (20)

The closed-loop system matrix also plays a crucial role in the error propagation for the
Riccati equation as we shall see below.
In a typical numerical analysis approach [6], one takes a worst case point of view and

the dynamics of (18) are summarized by the scalar quantity
o= 11kl - (21)

If we consider for instance a parameter estimation problem with Fy = I, GkaG; =0,
then v > 1, Vk and 4 > 1 in general. Because from this point of view, one can never
arrive at a stable error propagation system, «; is replaced in [6] by the spectral radius
of the averaged ®;. using arguments that are unusual for rigorous numerical analysis. In
[17], this shortcoming has been rectified for the special case of parameter estimation, by
realizing that the long-term dynamics are indeed governed by ®;; (as in [12]), which is
the backward consistency simplification. In the particular case of parameter estimation,
there exists a simple explicit expression for ®; [12].

Consider now the Py part of ©(k). An implementation of the Kalman filter that
leaves the computed P backward consistent can be considered as resulting from infinite-
precision calculations of a perturbed state-space problem with the following perturbed

part of the input: AGLQrG, (note that this perturbation may lead to a product GrQrG,
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of increased rank if the original G1.() kG; was not of full rank). For a local stability anal-
ysis, we consider such perturbations up to a time instant & and no further perturbations
thereafter. These perturbations lead to a perturbed P, which may be considered as
the initial condition of a new state space estimation problem which is the same as the
original one, but starts at time k. The robustness (stability) of the Kalman filter w.r.t.
such a perturbation of the initial condition is a problem of convergence of the Kalman
filter, and has been analyzed extensively in [18]. Usually, one requires Q-controllablity
and R-observability to guarantee exponential convergence. In [18] however, very loose
conditions have been obtained which guarantee decay of the effect of perturbations of
the initial condition on the innovations variance R{ = E ege,. Furthermore, we have the

following theorem from [18].

Theorem 1 Assume that the state space model (16) is uniformly completely observable
and that the model parameters are uniformly bounded. Consider a perturbation Ally such

that Tlg + Allg > 0. The effect of such a perturbation decays, viz.

1
AP, — 0 as k — 0 at a rate at least T for some a > 1.

Note that a rate of decay as in the above theorem is sufficient to have BIBO stability
in both the deterministic and the stochastic sense. Furthermore, this rate is uniform
in perturbations that leave the perturbed algorithm backward consistent (P, + AP, >
0, Yk > 0). Hence the algorithm is globally stable w.r.t. such perturbations. One
may remark that if exponential forgetting is introduced in the Kalman filter, then the
decay is exponential at a rate at least equal to the rate of forgetting (see [19]). However,
exponential decay is not necessary to have the globally stable behavior of the error system,
as we just indicated.

Whereas the local dynamics of the error decay on the state estimate are governed by
., the local dynamics for errors on Py are governed by “the square” of ®; (see further).

Hence, the weak conditions mentioned above lead to the rate of decay in Theorem 1 for

12



the square of ®;. The rate of decay for @, itself under the weak conditions above may
not be sufficient to lead to a BIBO system, especially in a deterministic approach (and
one may remark that the treatment of the bias due to non-zero mean roundoff errors in a
stochastic approach parallels the deterministic treatment). Hence, stronger requirements
on the estimation problem (than the ones in Theorem 1) need to be satisfied for the error
propagation on Z; to represent a BIBO stable system.

Now, the CKF in its straightforward implementation is not backwards consistent. We

shall consider the two components of the consistency requirements in some detail.

3.2 Symmetry

The symmetry requirement has received quite a bit of attention lately [6],[20],[17]. Note
that P, can be decomposed into its symmetric part P} = % (Pk—I—P;) and its antisym-
metric part Py = 1 (Pk—P;). Obviously, P € M = {P; : P = 0}, and the above error
propagation analysis applies to it provided that P € S = {FP; : P, > 0}, Vk. The com-
plementary part of the manifold is parameterized by Pg. In [6],[20], it has been indicated
(but not shown properly) that certain implementations of the CKF are stable, while
in other implementations, P blows up exponentially if the open-loop state transition

matrix is unstable. Consider the following two implementations of the Riccati equation:

R, = Ry+ H,PH,

(22)
Piyw = Fy|I — PoH, Ry Hy| PoF), + GLQwG,,
and
¢ = Ry + H,PH,
Ki = PH, (23)

Pop = Fi|Po— (KIR.") KT| Fi+ GLQiGy
Either implementation shows that an instantaneous error on Py ¢ can be interpreted as a
perturbation on GQG. The second implementation is computationally more efficient.
Round-off errors will cause P¢ # 0 in either implementation. When we perform a local

analysis of the propagation of the tangential (AFP}) and normal (APf) error components
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in (22), we obtain

AP = &, AP ®,
k+1 k k k (24>

AP, = &, AP O, .
Notice the “triangular” coupling structure between tangential and normal error compo-
nents (we have in fact a “diagonal” structure: complete decoupling). The equation for
AP} shows how its local dynamics are governed by the “square” of ®;. We note also
that the normal subsystem is governed by the same (stable) dynamics as the tangential
(backward consistent) subsystem. This is no surprise. Even though the Riccati equation
in (22) is not backward consistent within the class of symmetric Riccati equations, it
is consistent within the larger class of non-symmetric Riccati equations, and hence the
robustness of non-symmetric Riccati equations applies. Using (22), P has been found
(also experimentally) not to blow up in [20]. Non-symmetric Riccati equations can per-
haps most easily be understood by specializing to the parameter estimation problem. In
this problem, the symmetric Riccati equation corresponds to the RLS algorithm, while
the non-symmetric Riccati equation corresponds to the Recursive Instrumental Variables
(RIV) method [21],[22]. Now the robustness w.r.t. perturbations of the initial conditions
is pretty much the same for the RIV algorithm as for the RLS algorithm (as in fact shown
by (24)), which explains the stability of (22).
If P¢ # 0 however, then (23) on the other hand is not a Riccati equation, not even
within the class of non-symmetric ones. Performing a local analysis on (23), we obtain
AP, = O AP &+ Py (APPHR°KY — KL Ry Hy APE) F,

(25)
APR, = F, AP, .

One may remark again the triangular structure of the coupling between the two sub-
systems. The backward consistent subsystem AP} inherits the convergence properties
of the Kalman filter, as discussed before. The complementary subsystem has different
dynamics. An unstable open loop system (F}) leads to exponential instability of the
normal subsystem, as has been verified in [20]. An exponentially stable open loop on the

other hand guarantees global stability of the implementation (23).
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One may remark that P, € M is trivially enforced by e.g. computing only the upper
triangle of Ppyq and filling in the lower triangle by symmetry, or by performing the

operation Py + % (Pk—I—P,;) after each update.

3.3 Positive Definiteness

If Py becomes indefinite, then the innovations variance Rf may become zero (or singular,
if multivariable) or arbitrarily close to zero (singular). This singularity may cause very
large (unbounded) perturbations in the Riccati equation. Also, if Py is indefinite, then
there exists a subspace in which the usual negative feedback of the Kalman filter is turned
into positive feedback, easily leading to an unstable closed-loop state transition matrix.
The danger of P, becoming indefinite in the CKF depends on the combination of the
precision of the arithmetic and the conditioning of the estimation problem.

These issues are illustrated in Fig. 3 for a scalar Riccati equation in the case of
parameter estimation (hence RLS) (see also [23], and [24] for the multivariable case).
Exponential weighting is used with weighting factor A = 0.99. The Riccati equation
reduces to Pry1 = P /(Px+A). The innovations variance becomes singular for P = —\. If
Py > 0, then P;. will converge monotonuously to its steady-state value P,, = 1—\ = 0.01.
When Py = 0, then P, = 0, so Py gets trapped if it ever were to become zero. With
Py < 0, we see that the system is unstable and hence the slightest negative initial value
gets blown up, until at time m P,, < —A. Then automatically P,,.1 > 0, from where
Py converges smoothly. So, starting from a negative initial condition, the system has to
go through a bursting phenomenon before it stabilizes. Note that as P,_; — (=A) goes
down to zero, P,, goes negative without bound. Or as —A— P,, goes down to zero, P11
goes positive without bound.

In [25], it was shown that the nonlinearities in the Riccati equation lead to a negative
AGLQLG,. The authors proposed to compensate for this effect by adding an explicit
6GrQrGy, > 0 (at each iteration). However, it is difficult to determine in general how

much should be added in order to guarantee P > 0, Vk,, while avoiding to introduce

15



too much suboptimality. In [26], an interesting error analysis has been carried out (for
the special case of the RLS algorithm), avoiding any linearization, to clearly bring out
the effects of nonlinearities on the accumulation of the instantaneous roundoff errors
(averaging and other approximations had to be introduced though in order to interpret
the results). They lead to the same conclusion of a negative bias in AP,. The remedy
they propose though is, instead of adding some §GQrG) > 0, to organize all rounding
operations so that they bias Py towards positivity. Again, this mechanism is not able
to guarantee positivity under all circumstances. Finally, in [27] the rounding errors are
explicitly taken into account in the estimation problem, and the optimal estimate is taken

to minimize the total estimation variance, including the contribution from roundoff noise.

3.4 Square-Root Algorithms

Square-Root Kalman filters (SRKF) either propagate a matrix square-root of Py (co-
variance form) or its inverse (information form) [8]. It is immediately clear that SRKF
algorithms are backward consistent and hence the analysis for backward consistent al-
gorithms in subsection 3.1 applies. This quality should make them the preferred forms
for implementation. It is trivial to ensure that P, remains in the strict interior of S , by
keeping the diagonal of a triangular square-root of P, non-zero (using e.g. rounding-up
instead of truncation).

The reason that the analysis in [6] did not bring out this positive character of the
SRKF algorithms is that when linearization is done, it is done around the infinite-
precision trajectory. So we always linearize around a P, > 0, no matter how close it
may be to singularity (with the computed P, possibly being indefinite). In this way, the
desastrous effects of a Py becoming indefinite can simply never show up.

We should note that square-root algorithms do not propagate the state estimate
directly. Rather, they propagate the quantity P, 125 &, from which 73 can be determined
/2

if desired. The error propagation for P, 123, is also determined by the closed-loop state

transition matrix @y ;.
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3.5 Hierarchies of Consistency

We saw above one example of hierarchical levels of consistency in terms of symmetric
and general Riccati equations. As another example of hierarchy of structure and con-
sistency requirements, consider the case when the system matrices are time-invariant.
Then the Chandrasekhar equations apply and will often lead to a significant reduction
in the parameterization of the problem, if a certain displacement rank is low enough (see
below). So one could define backwards consistency in this case as the requirement to lead
to a problem with a certain given displacement rank. Applying the Chandrasekhar equa-
tions will ensure that this displacement rank is maintained throughout the computations.
However, one may also apply a Kalman filter to such a problem. But the Kalman filter
will not be backward consistent within the class of problems with a given displacement
rank! Nevertheless, the Kalman filter is backward consistent (at least, the square-root

algorithms are) for a broader class of least-squares problems.

4 The Chandrasekhar Equations

So consider the Kalman filtering problem for the case in which the system matrices are

time-invariant. Let

rank (6F,) = rank (P — Fy) = «a. (26)

Due to the time-invariance, we have rank (6P;) = rank (P — Pr) = o, VEk > 0.

4.1 A Normalized Algorithm

We can consider a minimal factorization
5Py = —TLoST, (27)

where ¥ is a a X a signature matrix with the same non-zero inertia as 6 Fy. The normalized

Chandrasekhar equations provide a recursive computation of the quantities Rz/ ? and
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K = KkR;e//Q (the state estimate update (17) requires the product Ky R, = TkR;(i/Z)
as follows [28]
R0 R* HT,

[ S el I AU 00 £ A g
Kyt Tnpn | | K FT 0 -3

N 29
where I, is an identity matrix of the size of ¥z, and Wy, is a so-called J-orthogonal matrix
which is chosen so as to annihilate the (1,2) block entry as indicated.

The state O(k) of the algorithm consists of the quantities 75 as in the Kalman filter
(and the error propagation properties of this part are unmodified), but Py is replaced
by K, RZ/ * and L. We seek the manifold M for this algorithm. Though P, is not
explicitly present in this algorithm, we could propagate it according to the following two

update equations :
Popn = Po—TiT,
k1 k /k k_ B | (29)
Pyw = FPRF — K K, +GQG
Eliminating P41 between these two equations, we find that given the state of the Chan-

drasekhar equations, Pj can be computed from the Lyapunov equation
Py — FPF = KKy, + IiL, + GQG' . (30)
Conditions for solvability of this equation are A\;A; # 1, Vi,7, where the \; are the
eigenvalues of F. For instance, if all |\;| < 1, then we can write the solution explicitly as
P=Y F (-EF; LT T, + GQG’) P (31)
i=0

Next, the requirement P, > 0 imposes certain inequality constraints on the state O(k)
(leading to the subset S of M). The Chandrasekhar manifold M can now be seen to be

determined by

1>

K.R.> = FP.H
RPRI? = R+ HPH (32)

Ky

1>

= R+ HF'K;, if F7' exists,
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where P, is the solution of (30) or (31). From (32), K} and R§ are clearly a function of K}
and RZ/ ?. The reverse is also true if a unique (e.g. triangular or symmetric) matrix square-
root RZ/ ? is chosen (if not, then extra non-minimality is introduced into the algorithm
with the ensuing possibly undesirable dynamics of a complementary subsystem). We
assume this matrix square-root henceforth to be unique (different choices for this matrix
square-root correspond to different forms of W},). The manifold may be parameterized by
L, and Z}, combined, i.e., given L, K} and RZ/Q can be computed from (30),(32). Within
this manifold, the Chandrasekhar equations are backward consistent and hence the error
propagation corrsponds to the robustness of a perturbation of the initial conditions F,
(such that still rank 6 Py = «) and Zg, as in the conventional Kalman filter! As for the
complementary part of the manifold (with the dimension of K and RZ/ ? combined),
consider

H = P'F'K,

o (33)
R = R, —HPH

assuming F'is invertible. Then the state (k) of the Chandrasekhar equations at time k&
corresponds to the data Ty, GQG', H and R. However, after time £, the data H and R
will be used. So at time k, accumulated round-off errors that cause the Chandrasekhar
state © to deviate from the Chandrasekhar manifold correspond to a variation in the
system matrices at time k. Such a (isolated) time-variation still can be accommodated
by the Chandrasekhar equations, but leads to an increase of « [8],[29]. Hence, the error
propagation in the complementary part is determined by the effect of such an increase in
a when it is actually being ignored, or in other words, when the displacement 6 P, [ > k
of rank > « is being approximated by —Ef} of lower rank a. We shall not further

investigate these issue here.
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4.2 An Unnormalized Algorithm

In an unnormalized algorithm, the Kalman gain K} itself is propagated and a specific

form of Wy, is chosen in which a maximal number of entries are either zero or one, viz. [§]

1 0 Ry HIL;
I —R.“HL
Kiyr Ly |=| K FLy [V, Uy = o (34)
L —R;"L,H I

0 R, |LH R

where Wy is now an unnormalized J-orthogonal matrix, viz.

, i R, 0

0 R

The state ©(k) of the unnormalized algorithm is the same as that of the normalized
algorithm, except that K, RZ/Q are replaced by K, RS, and Ly by Ly, Rj. Tt is easy to

see that we have an overparameterization considering that

6P, = —LyR;"L, (36)

)

(see (30) also, where L L, gets replaced by L R;"L}). So the quantities L, R} influence
the problem only through the product LyR;"L,. The size of the augmentation of the
complementary part of the state is %a (a+1) (assuming R, is computed in a way which
respects its symmetry). Without going into the details of the error propagation in this
complementary part, it is desirable to eliminate the %a (a+1) extra degrees of freedom.
One way of doing this is obviously by using the square-root Chandrasekhar equations
discussed above. This is also done in the normalized FTF algorithm (a special instance
of the Chandrasekhar equations, see below). In the unnormalized FTF algorithm, R}, is
kept diagonal, while each column of Lj has an entry fixed to the value 1 (as in the LDU
triangular decomposition), eliminating in this way the extra degrees of freedom.

In the unnormalized algorithm described above, a number of extra constraints appear
in fact. First of all, the signature of R}, should remain constant in time (inequality

constraints). Also, one can rewrite the updates of Rj and R}, in (34) above as (with
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e/ e/ N1/2
Bl = B (1-1Y))

7»/2 T/Q ) 1/_2 R }/k e REG/QHL]CR;T//Q ) (37>
B = R (1-vv)

Hence, the min(p, o) smallest eigenvalues (which are all < 1) of R;_ R;" and Rj_  R;°
are equal. From this, it is difficult to obtain information on for instance the eigenvalues

of R}, R; themselves. However, by considering the product of the eigenvalues, we get

det R}, _ det R}, o det R{ (39)
det Rf 4 det R, det R§

or hence an equality constraint on R} in which Il enters also in general.

So we do not offer a complete treatment of the error propagation in the Chandrasekhar
equations here, since we are not investigating the complementary part. Perhaps the only
other treatment of numerical errors in the Chandrasekhar equations available in the
literature though appears in [6]. There, the state for the error system is taken to be the
errors on the state estimate and on the Kalman gain. The quantities L;, and RS have
been left out. Thus, only an undecoupled subsystem of the error system is considered in
[6] and hence the resulting analysis may not be valid, not even for the part of the system

that has been considered.

5 Fast RLS Algorithms for FIR Filter Estimation

We have mentioned the problem of estimating the impulse response Wy of an FIR fil-
ter of length N before, when we discussed the LMS algorithm. Here we consider RLS
algorithms, applied to the same problem. This problem is a special case of the Kalman
filtering problem (16) with for instance G, = 0, Fx = I, and consecutive Hy (Xy(k)
in the notation of LMS/RLS) being related by a shift structure. We shall introduce
exponential weighting though and thus the LS criterion becomes (see [15] for notation)

k
i {ZM_Z ld; = Wxa Xn(@)I* + N |[ Wi — WOHQ} (39)

N,k =0
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where A &~ 1 and the regression vector is Xy (k) = [;L'H(k) ;L'H(k—l) cee ;L'(k—N—I—l)}H
and x(.) is the input signal to the adapted FIR filter (for simplicity, we shall assume the

signals to be scalars). The RLS algorithm for criterion (39) updates the filter estimate
according to [30],[22]

ev(k) = dk)+ Wy Xn(k)

. (40)
Wi = Wnrpo1 + en(k)yy(B)Cng
(these equations are called the joint-process part in RLS terminology) where
Cny = —XH(E)A 'Ry
N,k N( ) N,k—1 ( 41)

YN (k) = 1—=CnpXn(k)
k .
and the inverse of the sample covariance matrix Ry = Z /\k_ZXN(i)X]PVI(i) + N T s

=0
recursively updated using the following special instance of the Riccati equation

RJ_V}k = /\_IRJ_V}k—l _GJPVI,kWN(k)éN,k (42)

The initial conditions are obviously Wy _y = Wy, R]_V}_l = %]. The state of the RLS
algorithm consists of Wiy and R]_V}k, the analogs of 1,1 and P4y in the Kalman filter.
So we see that the joint-process part (state component Wy 1) is backward consistent,
while for R]_V}k, we have the Kalman filter manifold. The closed-loop system matrix @y,
the crucial quantity determining the propagation of backward consistent errors, can for

RLS be written explicitly as
®py = VR RNy, k> (43)

This shows the exponential decay with base A for errors on the filter estimate when Ry
remains bounded from above and from below. The situation for the Riccati equation is
slightly modified from the Kalman filter case considered above, due to the introduction

of exponential weighting, and we get (for backward consistent errors)

1
ARYY = @ ARY®L - (44)
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Equations (43) and (44) combined lead again to an exponential decay with base A. Note

that for the case A = 1, R]_V}k decays as . From (43) and (44), we get that errors on

o =t

R]_V}k decay as k%, which leads to a BIBO error system. The errors on Wy i decay as
only however.

When we apply the RLS algorithm to minimize the cost function (39) recursively, we
ignore the special structure that is present in the problem at hand (shift structure between
Xn(k) and Xny(k—1)). Ignoring this structure leads to the same manifold as we have
found for the Kalman filter. Taking this structure into account leads to extra constraints
that we shall discuss in detail below. So in fact, the RLS algorithm is not backward
consistent for the specially structured problem that we are actually considering. However,
it is backward consistent (at least, the square-root versions are) for a more general least-
squares problem in which the consecutive Xy (k) would be unrelated, and this has allowed
us to analyze the error propagation using the backward consistency approach. Whether
we include the special structure in the backward consistency requirements or not, we have
found that the error propagation of the backward consistent part of any RLS algorithm
is exponential with base A (when A < 1). This proves the conjecture in [9] that the
mazimum eigenvalue governing the error propagation in any RLS algorithm for solving

(39) can not be smaller than .

5.1 Minimal Parameterizations of the Structured LS Problem

We shall consider the so-called prewindowed problem, in which the input signal z(.)
is assumed to be zero before time 0. Fast RLS algorithms exploit the special shift
structure in the LS problem considered here, and replace the Riccati equation with what
is generally called the prediction part. The prediction part delivers the Kalman gain
C ~x and the likelihood variable (k) (in the FTF algorithm, or equivalent quantities
in the FLA/FQR algorithms) to the joint-process part. So the coupling between the
prediction part and the joint-process part is one-way, and hence both parts can be studied

separately (as the & and Py parts in the Kalman filter). The study of the joint-process
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part in the fast RLS algorithms is the same as for the conventional RLS algorithms, so
we shall not further discuss the joint-process parts. Traditionally, the prediction part is
overdimensioned by one, replacing the Riccati equation for the inverse of Ryyq instead
of Ry . We shall indicate how this slight nonminimality can be removed in each of the
FTF, FLA and FQR algorithms. This modification does not influence the fundamental
nature of the error propagation in the prediction part however.

The shift relation between consecutive Xy (k) leads to Ry41% being close-to-Toeplitz.

Therefore, we consider the displacement structure of a Hermitian matrix R [31]:
VeR = R—(SRST = Gua? (45)

where S is the lower shift matrix (ones on the first subdiagonal). The displacement VR
has a minimal factorization of the form GXGH with ¥ being a signature matrix with
dimension equal to the rank of V/R. Let ryy1(k) = Rnt1ru1, the first column, and

rs1(k) = uf Ryg1pur. Then

V§3N+1,k = rns1 (k) (k)rd (k)

H
0 0
—SSHTN+1(k)rj_vgrl(k)TJPVIJrl(k)SSH - % (46)
Xn(k) | [ Xn(k)
H
0 0
Rynyp =T (ryvpa(k)) — 3£ L
Xn(k) Xn(k)

where 7 (v) and L (v) are a Hermitian and lower triangular Toeplitz matrix resp. with v

as first column. So we have the following minimal parameterization of Ry 4y x:
Onl(k) = [rplk) XY (k)] . (47)

Hence, the dimension of the minimal parameterization is 2N+1, or actually 2N —1, after
the substitution N+1 — N. In order to study the error propagation in backward con-

sistent fast RLS algorithms, we may well consider the error propagation for the minimal
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parameterization ©,,(k) for which the state equations are

{rfvul(k) = Arlla(k=) +eMXER-D0 WPl

Xy(k) = SXy(k—1) +uiz(k).

z(k) is the input signal for this quadratic system. Linearization (manifold ~ tangent

subspace) yields the local error dynamics:

My 0

19
0 z(k)Iy] SY )

AO, (k) = AO,,(k—1) [

which are exponentially stable with base A\. However, the linearization step can actually
be dropped. Indeed, due to the obvious global exponential stability of the error system
corresponding to (48), the error propagation of backward consistent fast RLS algorithms

is globally asymptotically stable (within the applicable S).

6 The FTF Algorithm

The Fast Transversal Filter (FTF) algorithm [15],[9], is a fast version of the conventional
RLS algorithm above. The state for the FTF algorithm is (see [9] for an introduction
and notation)

O(k) = [ans an(k) byy By(k) Cni 43" (k)] (50)

where Axi =1[1 ani], Bnvix = [by g 1] are forward and backward prediction filters. The
classical approach based on linearization and averaging leads to the following system

matrix of the error system

i Moo * * 0 * ]
0 X * * 0 *
B F(3) = 0 0 [-K (1-N]1 * 0 x 1)
0 0 x L_ 9K, (1— ) 0 x
0 0 0 0 SH —unby 0
ok * * 0 1 — K3
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for A € [l —¢,1]. The K; are feedback coefficients pertaining to a stabilizing feedback
mechanism based on redundancy, and S¥ —unby is a bottom companion matrix with the
zeros of the backward prediction polynomial as eigenvalues. The eigenvalues of F' are
approximately given by its diagonal entries.

The prediction part of the FTF algorithm provides Cﬁn,k, v, (k) for n = N, N+1.
Hence, it is straightforward to reduce N by one, N+1 — N, in the prediction part and
still provide the appropriate quantities C~'N,m 7y (k) for the joint-process part. But we

shall stick to N+1 here for notational simplicity.

6.1 The FTF Manifold M%

Consider now the following question. If ©(k) corresponds to a prewindowed problem
with the given shift-invariance structure, can O(k) be arbitrary? The answer is no, O(k)

lies on the following manifold Mg .

6.1.1 Necessity of M%)

Consider
R—l 0 . - o . — H —
AW = AN AN — By B+ A [0 Cva} [O CN’k} (52)
0 0
B 1 0 0 A
Ry, 0 S H oHi H B
= =D NSGEGT ST Y=l 1 0 |,G"= B
0 0] = -
0 0 1 V[0 Tyl

(53)
The normalized filters ZN,kEN,kﬁN,k constitute the state for the (prediction part of) the
normalized FTF algorithm [15]. Due to the zero entries (problem independent values) in
the matrix considered above, its generator (i satisfies certain constraints which can be
expressed as follows:
N
(Z AZ’SZ’GEGHSHZ') ungr =0, ul,, =[0---01]. (54)
=0
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These constraints define the FTF manifold M; . A compact characterization of M; is

b b < : 4 4 N w w N H
obtained as follows. Pre and postmultiply (52) with [1 Vo (W) ] , [1 Vol (W) ]

to obtain

(1 —zw) R]_V}k(z,w) = Anx (ﬁ) An (%X)

_ (%)NBN,JC (ﬁ) B, (%) + 2wAC N £ (@) Cn .k (%)

Putting w = 27! yields

O_ANk(\/_) Ani (VAz) - A—NBN,k(f) BNk(\/l_Z)—FACNk(\/X)CNk(\/(_z))
56

(53)

Now, the specification of the manifold via (56) is not yet complete. Indeed, the condition

, O=n0pf
0 0

However, we also need O > 0 ! It can be shown (see e.g. [32] for A = 1) that

o o0

1=0

N
expressed in (54) forces Z/\iSiGEGHSHi to be of the form |:

this corresponds to requiring the scaled backward prediction polynomial By x (VLX) to be
minimum phase. This requirement now, together with (56), allows for a specification of

the manifold as B being an explicit function of A,C via a spectral factorization operation:

= {@ :B = fA—/l2 (Z, U)} where fA—/l2 is defined by

M.
{ B)B() = WAL AWE) srme(He(E) O

g(\%) minimum phase

ol

6.1.2 Sufficiency of M%)

Here we pose the reverse question: given © € Mz, can we find a LS problem with the
3

required structure, of which @ is the state. If © € M%, then from (53), we can find a

matrix R]_V}k that satisfies

0 0 o
— ANyAng — ByyByi.  (58)
0 0

Ry, O}A

_ —H —
0 RN}k‘FCN,kCN,k
Again, using a reasoning that is very similar to one in [32], one can show that the

minimum phase property of By (==) implies that Ry > 0. Hence Ry exists and we
ini phase property of By (=) implies that Ry > 0. Hence Ry, ts and
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can apply the matrix inversion lemma to obtain
_ —=H — -1 —H (= —H -1
(RN}k + CN,kCN,k) = Rnip— BniCyy (CN,kRN,kCNﬁk + 1) CnipByg  (59)

where the term being inverted on the RHS is greater than one, due to Ry > 0. Hence

we can interpret the second term on the RHS as Xx (k)X (k) with

T _ —1/2
XN(k) é _RN,kcﬁﬁk (CN,kRN,kcﬁﬁk + 1) . (60)
We also introduce
_ A _ —H —=
RN}k—l = /\<RN}k+CN,kCN7k) . (61)
which, using (59) and (60), satisfies
ARy g1 = Ry — Xn(K)XH (k). (62)
Using (58) and (61), we can introduce
Ry 0 _—_y — 0 0 H -
R, = | + BBy = + AN AN (63)
0 0 0 Ry_y

This implies that Ry4q  is of the form

Rny * * *
Bynpgr = = . (64)
* ok * Ry g-1
Hence,
* * 0 0
Vilingie = —
* RN,k—l 0 %R]\Qk
= v (B (F)ri. (k) (65)
H
0
=SSN 1 (k) (R)rig (R)SST — 5
Xn(k) | | Xn(k)

which is the required structure we found in (46).
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6.1.3 M% for the Unnormalized FTF Algorithm

To see what the corresponding manifold for the usual unnormalized FTF algorithm would

be, consider the correspondences

Ans = a2 (k)Any < Axg, an(k) (66)
By =y (k)Byy < By (k)
Cnp = ’y]lv/z(k)CﬁNﬁk — C~'N7k,’yN(k) but not — !
The unnormalized forward and backward prediction polynomials are obtained from their
normalized counterparts by scaling a certain entry to unity. We also keep the squares of
the scaling factors so that there is a conservation of the number of degrees of freedom.

However, for the Kalman gain part, we cannot obtain C ~.k and (k) uniquely from Cy .

alone. An extra condition is needed:
(k) = AN Bn(k)fan (k) . (67)

In the unnormalized case, the manifold M% consists of the unnormalized version of (57)
together with (67). In summarizing, we can note that (k) € M implies that O(k)
corresponds exactly to a certain prewindowed problem, and hence that it is backward

consistent !

6.1.4 Minimal Parameterizations of Mg

We can use the minimal parameterization O, (k) introduced before in (47). It should now

be easy to determine the transformations that allow the correspondences in the following
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diagram

AN
an(k)

Cn
rn4+1(k) }4 | M — o(k) (68)

Xn(k) 5
Nk

B (k)
(k)
Thanks to M 2, thereis a 1-1 correspondence between {ry11(k), Xy (k)} and the {ANﬁk, an(k), ﬁN,k}

part of (k).

6.2 The Minimal FTF Manifold M%

Though the FTF manifold M§ introduced above is a valid concept, there are actually
more constraints to be satisfied for the algorithm to be backward consistent. This problem
comes about as follows. The FTF algorithm drags a regression vector Xy (k) along as
part of its recursions. So the actual extended state of the (prediction part of the) FTF
algorithm is ©°(k) = [@(k) Xﬁ(k)} and the FTF algorithm can be described as :

Ok) = [(O(k=1), Xn(k—1),(k))
(69)

Xn(k) = SXn(k=1)+uz(k)
with O(k) as in (50). Actually, this Xn(k) as part of ©°(k) may very well be different
Mo
from the Xy * (k) in the parameterization of the backward consistent part of (k) (see

(68)) ! Hence, the backward consistency requirement leads to an extended manifold
Mo
M = {@e(k) (k) € My, Xn(k) = Xy 3(@} (70)

My
where Xy 7 (k) is a function of ©(k) as indicated in (68).
Let us take another look at the minimal parameterization of M2. From the sufficiency
3
part of M2, we can determine a matrix Fyyq with displacement rank 3 and displace-
3

ment structure V§3N+1,k = GYGH with G = [G4 Gy Gs) and ¥ = diag {1,—1,—1}. For
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a matrix Ryy1, computed from a O(k) € M;%, the three generator vectors GGy, G and
(5 are of the form shown in (46). In the developments thus far, we have actually tacitly
assumed that G3 = [0 X]@I(k)}H, where Xy (k) is the regressor vector that is explicitly
used in the FTF algorithm, and we have concentrated on the specific relation between
the first and the second displacement generator vectors, requiring Gy = SSH G, which
leads to the concept of ./\/l% . However, the requirement O(k) € Mg does not guarantee
X]J:l%(k) = Xn(k), and if X]J:l%(k) # Xn(k), then the error propagation on Mg is not
that of the minimal parameterization discussed before.

So the actual extended state ©°(k) of the FTF algorithm leads to more constraints
in the backward consistency requirement, as displayed in the definition (70) of the ex-
tended manifold M% For the purpose of further analysis, it is reasonable to assume that
the Xy (k) part of ©°(k) is error-free (any error on Xy (k) is due to quantization of the
signal z(.) before it enters the FTF algorithm and as such has little to do with the error
propagation in the FTF algorithm). So we shall again concentrate on the (k) part and
consider Xy (k) as some external quantity. The constraints on ©(k) implied by M‘% will
be renamed as M 1 (only about % of O contributes now to a minimal parameterization
of M% as we shall see below). O(k) € M% means that ©(k) corresponds to a prewin-
dowed problem with Xx(k) as last N data samples, but the preceding input samples are

arbitrary. The manifold M L can be defined as

My = {0() : (B n(h), O () = faa, (Axian(B)}p . (71)

1

3

The function faq, can best be described by passing by the intermediate quantity ryy1(k)
3

as follows. Using (46), one can write the normal equations for the forward prediction

problem as

AN,k T(TN_H(]C)) == [OzN(k) 0--- 0] + AN,k ,C (
Xn(k)

We can rewrite the LHS in the real scalar case as
H ¥ 5 H g \H
Ava T (rxsa(8) = i (Dhw { Tent (Tenall) + £ (a%)") (@3)
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where [ y = % @ Iy and T has ones on the antidiagonal and zeros elsewhere. Equations
(72) and (73) combined allow one to solve for ryy1(k) given Axg, an(k) and Xy (k).
Given ryy41(k) and Xn(k), the remaining quantities that make up ©(k) are easily found.

If O(k) € M%, then also the following constraint is satisfied
I (k) = 1= CnaXn(k). (74)

Obviously, a minimal parameterization for M% is rn41(k) (given Xn(k)). The error
propagation on M% corresponds to the propagation of errors on ryi1(k). The error
system associated with ryiq1(k) is linear time-invariant and has N+1 eigenvalues equal
to exactly A (see (48)). This corrobarates our earlier findings recalled in (51) in which
linearization and averaging techniques had lead us to conclude that one third of the
3N +3 eigenvalues are approximately equal to A, and these eigenvalues are more or less
associated with the forward prediction quantities.

The decomposition of the error along tangential and normal components leads to
two subsystems that are coupled only in a one-way sense. The tangential subsystem
has the same dynamics as the system corresponding to the minimal parameterization
ry+1(k) discussed above. The normal subsystem (of order 2N+2) therefore contains the
N +1 exponentially unstable modes 1 (in the unstabilized TN FTF algorithm [9]) and
the marginally unstable mode that we found in the averaging analysis [9]. The slightest
deviation of the computed state from the manifold will thus lead to a further exponential

running away from it.

6.3 Stabilization of the FTF Algorithm

The stabilization problem of the FTF algorithm can now simply be formulated as the
problem of getting back to the manifold, once we deviate from it. The feedback mech-
anism considered in [9] is one way of accomplishing this goal. Actually, the so-called
rescue procedures [15] can be considered as very rough projection operations onto the

manifold. The original rescues [15] projected (:)(k) onto a fixed point on M% (RN+1k

32



reduced to a diagonal matrix):
X]{{(k) = éN,k = 0,’}/]\7(16) = 17AN,k (Z) = BN,T (Z) = 17OzN(k) = /\NﬂN(k) =M. (75)

This reduces the normal error component to zero, but leads to a huge error component
within M% which admittedly decays to zero exponentially. The following rescue point on
M 1 is much more data dependent and corresponds to approximating the prewindowed

data matrix Xyt by a pre and postwindowed data matrix :

X]{{(k) = éN,k = 0,’}/]\7(16) = 17~AN,k (Z\/X) == BN,k (\/LX) ) ﬂN(k) = /\_NOzN(k) . (76)

Note that the prediction filters have to be initialized to minimum phase filters for Ry 41 %
to be positive definite though. So By should be kept and Ay adjusted accordingly,

rather than the reverse, even though By is more susceptible to error than Ax .

6.4 Relation to the Chandrasekhar Equations

The FTF algorithm has been shown to be a special instance of the Chandrasekhar equa-
tions in [29, chapter 7]. It actually involves an infinite-dimensional time-invariant state-
space model. However, P, is required to be non-zero only at N? well-defined positions.
This requirement leads to the constraints defining M% . The requirements defining the
Chandrasekhar manifold lead to the extra constraints M%, and from there to M L. The
inequality constraints P, > 0 lead to the minimum-phase requirement on the backward
prediction polynomial (part of Lj). The Chandrasekhar constraints (38),(33) lead to the

FTF constraints (67),(74) respectively.

7 The FLA/FQR Algorithms

As a final example, we consider the recently introduced Fast QR (FQR) algorithm
[33],[34],[35], another fast RLS algorithm. This algorithm is intimately related to the
Fast Lattice (FLA) algorithm [36]. The FLA/FQR algorithms are a fast version of
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square-root Kalman filtering, applied to the FIR filter parameter estimation problem.
Hence, in the joint-process section, the filter estimate Wiy 4 is replaced by WN,kR}\{; (see
section 3.4), though the innovation ex(k) is still provided. The error propagation for
this joint-process part of the algorithm state is exponentially stable with base A (the
closed-loop system matrix - see section 3.4). As usual, the joint-process part depends on
the prediction section but not vice versa, so we can concentrate on the prediction part.
Whereas the prediction part of the FTF algorithm provides the Kalman gain to the
joint-process part, the Kalman gain Cy = —X]}VI(k)R]_V}k is replaced by —XfVI(k)RJ_ng2
in the square-root algorithms, which is the set of backward prediction errors from order
0 to order N —1. These backward prediction errors are part of the algorithm state for
the prediction part of the FLA/FQR algorithms. Historically, the backward prediction
errors are computed for one order too high.

The propagation of numerical errors in the FLA algorithm has been analyzed in [12].
However, this analysis does not apply to the FQR algorithm, since a certain crucial
assumption in this analysis (only order-update sweeps and hence causality in the or-
der direction) is not satisfied in the FQR algorithm (which also has an order-downdate
sweep). The FQR algorithm can easily be shown to be backward consistent, reducing
the demonstration of the (before unknown) stable dynamics of the error propagation in
this algorithm to a simple excercise. One may comment that the analysis of the error
propagation in the FQR algorithm in the conventional way, using linearization steps and

such, may be a formidable, if not impossible task.

7.1 The FQR Algorithm

The application of the backward consistency concept to this algorithm was first done in
[10] to demontrate its stability. It may be useful to give an alternative exposition of this
in light of the other applications discussed here. We shall use the notation from [10],[34].
The algorithm is stated in Table T of [34]. The quantities announced in this Table T as

“available at time n” contain the state plus a number of intermediate quantities. To see
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what the state of the algorithm is, reduce the time index by one in the equations in Table
I labeled as (5),(6) and (7), and start with equation (5) as the first equation for the set of
operations to be done in one time update for the prediction part (in other words, in one
time update of the prediction part, go through equations (5),(6),(1),(2),(3),(4)). This

reveals the following quantities as being the state of the prediction part
O(k) = [wso(k). ..., 2 v (k). EYR (k). @o(k). ... Ena (k)] (77)

where x,(k) are scaled reflection coefficients, & ,(k) are scaled backward prediction
errors, and ¢ (k) is the forward prediction error covariance of order N. However, this
prediction part goes one order too high. By substituting N — N —1 in the prediction
part and in the state (77), we get the prediction part state dimension down from 2N +1
to 2N—1. The following additional operations have to be added to the joint-process part

though (the ~ in [34] is the square-root of the v we have used before)

Oni(k+1) = sin™t (2a=lil)

v —2(k+1)

yn-1(k+1) = yn_a(k+1)cosOn_1(k+1) .

(78)

We now have the state dimension down to the minimal 2N—1, so we expect the manifold
M to be the complete (2N —1)-dimensional Fuclidean space. However, we may find a
non-trivial set §, determined by inequality constraints.

To determine S, let us try to find a prediction problem of which a given vector ©(k)

is the resulting state, and see which constraints we meet in the process. First we have

Yoar (k) = (k) = (6.(k) , n=0,...,N=2 (79)

where vo(k) = 1. Since ~,(k) € [0,1], the above process requires ||¢,(k)|| < 1 where

& = [€o-- 'Eb,N—Q]I- Next, we have
Epn(k) = Egnpr(k) + (2a(k)) . n=N-2,....0 (80)

This process does not impose any constraints apart from the fact that we have E}/ ]37_1(16) >

0 of course. Now we are ready to determine
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o N,(k) = xpnlk)/\/FEsn(k), n=0,..., N=2, the reflection coefficients

o ¢, (k)/v.(k), n=0,..., N=2, the normalized backward prediction errors.

These two sets of quantities are all we need to determine the normalized backward pre-
diction filters B,(k), n =0,..., N—1 with the Levinson step-up procedure. The filter
of order zero is given by El:é/z(k) = E;é/z(k). We can stack these backward prediction

filters of increasing order and length in an upper-triangular matrix, viz.

Bo(k)
- By(k)
0 0

This leads to the UL factorization of an inverse sample covariance matrix of size N:

1

Py(k) = Un(k)Uy(k) (82)

Let Un_1(k) be the top left square submatrix of Uy(k) of size N —1, then we can

determine a data vector as
xy-i(k) = Uy_(k) & (k) (83)

The matrix Py(k) in (82) has 2N —1 degrees of freedom by construction. If one con-
siders the displacement of Py'(k) (which is of rank three), then one finds out that it
is determined by the first row of Py' (k) and the vector xy_;(k) in (83), thus 2N —1
parameters in all (as in the FTF algorithm, which is a different algorithm for the same
problem). So Py (k) is also determined by these 2N —1 parameters. Let us now consider
the construction of a data matrix with 2N — 1 data points of which the last N —1 are
given by xx_1(k) in (83) above. Let Xy (k) be a prewindowed data matrix built from

the data
{..,0,2(k—=3N+3),...,2(k—2N+2),0,...,0,2(k—=N+2),...,2(k)} (84)

where {z(k),...,2(k—N+2)} are from xx_1(k) in (83) above and {z(k—2N+2),...,2(k—3N+3)}

are to be determined such that
Xy (k) Xy(k) = PR (k) . (85)

36



One could alternatively envisage a data sequence of 2N —1 contiguous data samples,
without the N —1 zeros in between as in (84) above, but the approach taken here is

simpler to formulate. Consider now the matrix

Tn(k) = Py'(k) = U (v (k) U (-1 (k) (86)
where U(v) is an upper-triangular Hankel matrix with v as first column. One can easily
show that 7Tn(k) is a Toeplitz matrix (pre and postwindowed case). One can take the
symmetric covariance sequence of length 2N —1 corresponding to 7n(k), apply spectral
factorization and e.g. take the minimum-phase factor with the first coefficient being
positive. If one takes {x(k—2N+2),...,2(k—3N+3)} to be the sequence of length N
corresponding to this spectral factor, then with this choice of the data samples, equation
(85) will be satisfied. So we find that with any state vector ©O(k) that satisfies E}/]é_l(k) >
0, ||les(K)|| < 1, we can associate a prewindowed problem with 2N —1 data points. Hence
the backward consistency and hence the exponential stability with base A. The joint-
process part is trivially shown to be also backward consistent (there are no constraints
here, just as there are no constraints on the joint-process state of any of the algorithms

considered here).

7.2 FLA Algorithms

The normalized FLA algorithm [37] can be handled in the same way as the FQR algorithm
above. So the normalized FLA algorithm is also backward consistent and its prediction
part state consists of N—1 backward prediction errors, N—1 reflection coefficients and the
input signal energy. The inequality constraints are in this case the input signal energy
being positive, and the reflection coefficients being bounded by 1 in magnitude.

The unnormalized FLA algorithm with order-updates for the forward and backward
prediction error variances corresponds to a QDR (R unit-diagonal) factorization of the
data matrix instead of a QR factorization. Here the backward consistent part of the

state © can be shown to correspond to the Q) and R factors of the QDR factorization of a
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Toeplitz data matrix. However, the complementary part of © corresponds to the diagonal
matrix D, which may be perturbed w.r.t. its value given by the QDR factorization of this
Toeplitz matrix. A simple application of the analysis in [12] shows that such perturbations
lead to stable dynamics. Similarly, the complementary part of © for any FLA algorithm
can be shown to be exponentially stable (with base A) using the techniques of [12]. Indeed,
all FLA algorithms are composed of order-update sweeps only so that any given section
of the lattice filter only depends on the lower-order sections. This decoupling allows for

the separate analysis of each section, which renders the analysis extremely simple.

Suitable position for Table I

It is possible to come up with unnormalized FLLA algorithms that are backward con-
sistent. One such algorithm is provided in Table 1. Tts derivation is analogous to the
derivation of any unnormalized FLA algorithm [30]. The state of the algorithm com-
prises r,(k), n =0,..., N=2, A,(k), n=0,..., N=2, and o(k), or 2N—1 components
total. Though the state dimension is minimal, the computational complexity of the
algorithm is clearly not minimal. The point is that for the FLA algorithms, backward
consistency is not required to assure good numerical behavior since in the FLLA algorithms
that are not backward consistent, the complementary part has the same exponentially

stable dynamics as the minimal part.

8 Concluding Remarks

We have introduced the concept of backward consistency. This concept leads to minimal
parameterizations of the state of a recursive algorithm (or rather, of the problem it is
solving) and to the introduction of a manifold. Using the manifold, the error system can
in general be decomposed into two subsystems. Since the coupling between these two
subsystems is one way, the dynamics of both subsystems can be analyzed separately. The
analysis of the minimal part reduces to the problem of the convergence of the algorithm

from arbitrary initial conditions. The analysis of the complementary part still requires
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linearization and averaging, which are the classical tools in the analysis of the propagation
of roundoff errors. Sometimes, these tools may be avoided by embedding the problem
into a larger, less restrictive class of backward consistent problems. We have applied the
new technique to a variety of least-squares algorithms. In concluding, we would like to

comment on the following issues.

8.1 Dynamics of the Complementary Subsystem

Stability or instability of the the nonminimal part is often related to

e open-loop system stability. The open-loop stability refers to the eigenvalues of Fj,
or Fi7', depending on whether we deal with a covariance form (propagation of Pj)
or information form (propagation of P ') formulation respectively. For instance,
we have Fj, = \/LX] for the FIR filter parameter estimation problem with exponential
weighting (at least for the prediction part). The FLA algorithms which propagate
the forward and backward prediction error variances o, (k), 3,(k) directly are fast
versions of square-root information form Kalman filters, while the FLA algorithms
propagating o, '(k), 3, '(k) are fast forms of square-root covariance form Kalman
filters. Stable dynamics of the complementary part in the first class of algorithms

can be explained by the stability of Fj'.

e whether some feedback applies. This feedback may be the inherent feedback of the
Kalman filter. This explains why the AP subsystem has the same stable dynam-
ics as the AP} subsystem for the case of the backward consistent non-symmetric
Riccati equation. This also explains the exponential stability of the second class of

FLA algorithms mentioned above. Feedback may also be of a different nature, as

in the stabilized FTF algorithm [9].
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8.2 Persistent Excitation

Singularity of Py, (due to loss of controllability and/or observability) leads to instability
if the open-loop system is unstable, even for the backward consistent subsystem. In fact,
when P, becomes singular, the minimal parameterization is no longer minimal. Taking
a closer look at the prewindowed RLS problem in particular, non-persistent excitation
means that the input signal consists of fewer than N (complex) exponentials [38]. We
see that due to prewindowing, singularity may strictly speaking only occur in the limit,
as time goes to infinity. Of course, with exponential weighting, the convergence towards

singularity is exponentially fast (in the absence of persistent excitation).

8.3 Imitialization of Fast RLS Algorithms

Adding a so-called soft constraint [15] to the least-squares criterion leads to a regularized
problem right from the start. Again, in the absence of persistent excitation, the problem
will converge to a singular one, and this exponentially fast if exponential weighting is
used. When no soft constraint is used, all fast RLS algorithms take on an order-increasing
structure during the first N time steps. In this way, extra minimality problems due to un-
derdeterminedness are avoided by considering exactly determined problems of increasing

size during the first N time steps.

8.4 Structured Condition Numbers

Recently, the notion of a structured condition number has been introduced in numerical
analysis circles [39],[40],[41]. The structured condition number is the condition number
that one obtains, when perturbations of the problem at hand are restricted to obey
certain structural constraints. This is an application of the backward consistency concept
to classical numerical analysis notions.

Finally, we may remark that it is possible to apply the backward consistency concept

to least-squares algorithms that are not recursive in time, but in order. More specifi-
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cally, consider the Levinson and Schur algorithms [30] for solving a set of equations with

a Toeplitz matrix of coefficients. The Schur algorithm turns out not to be backward

consistent for the class of Toeplitz matrices, but it is backward consistent for the larger

class of quasi-Toeplitz matrices (characterized by a displacement rank equal to two). The

Levinson algorithm on the other hand is not backward consistent, for any class of prob-

lems. This appears to suggest that it may be possible to come up with a version of the

Schur algorithm that would be better behaved numerically than the Levinson algorithm.

References

1]
2]

J.H. Wilkinson. The Algebraic Figenvalue Problem. Clarendon, Oxford, 1965.

D.T.M. Slock. “An Overview of Some Recent Advances in Fast RLS Algorithms”.
In E. Deprettere and A.-J. van der Veen, editors, Algorithms and Parallel VLSI
Architectures, volume A: Tutorials. Elsevier Science Publishers, Amsterdam, 1991.

Proc. of Int. Workshop, Pont-a-Mousson, France, June 10-16, 1990.

D.T.M. Slock. “The FTF Manifold and its Role in the Numerical Behavior of Fast
Transversal Filter RLS Algorithms”. In Proc. ICASSP 91 Conf., pages 37053708,
Toronto, Canada, May 14-17 1991.

D.T.M. Slock. “The Backward Consistency Concept and a New Decomposition of
the Error Propagation Dynamics in Recursive Least-Squares Algorithms”. In Proc.
Adaptive Signal Processing, part of SPIE’s Technical Symposium, San Diego, USA,
July 21-26 1991.

J.R. Bunch. “The Weak and Strong Stability of Algorithms in Numerical Linear
Algebra”. Linear Algebra and its Applications, 83/89:49-66, 1987.

M.H. Verhaegen and P. Van Dooren. “Numerical Aspects of Different Kalman Filter
Implementations”. IEEE Trans. Autom. Control, AC-31(10):907-917, Oct. 1986.

41



(7]

[3]

[9]

[10]

[11]

[12]

[13]

G.J. Bierman. Factorization Methods for Discrete Sequential Fstimation. Academic

Press, New York, 1977.

M. Morf and T. Kailath. “Square-Root Algorithms for Least-Squares Estimation”.
IEEE Trans. Autom. Cont., AC-20(4):487-497, Aug. 1975.

D.T.M. Slock and T. Kailath. “Numerically Stable Fast Transversal Filters for
Recursive Least-Squares Adaptive Filtering”. IEEFE Trans. Signal Proc., ASSP-
39(1):92-114, Jan. 1991.

P.A. Regalia. “Numerical Stability Properties of a QR-Based Fast Least-Squares
Algorithm”. TEEE Trans. SP, submitted.

H. Kushner. Approzimation and Weak Convergence Methods for Random Processes,
with Applications to Stochastic Systems Theory. The MIT Press, Cambridge, MA,

1984.

S. Ljung and L. Ljung. “Error Propagation Properties of Recursive Least-Squares

Adaptation Algorithms”. Automatica, 21(2):157-167, 1985.

A.V. Oppenheim and R.W. Schafer. Digital Signal Processing. Prentice-Hall, En-
glewood Cliffs, NJ, 1975.

B. Widrow et al. “Stationary and Nonstationary Learning Characteristics of the

LMS Adaptive Filter”. Proc. IEEFE, 64(8):1151-1162, Aug. 1976.

J.M. Cioffi and T. Kailath. “Fast, recursive least squares transversal filters for

adaptive filtering”. IEEE Trans. on ASSP, ASSP-32(2):304-337, April 1984.

D.T.M. Slock. “On the Convergence Behavior of the LMS and the Normalized LMS
Algorithms”. Submitted to IEEE Trans. on SP.

M.H. Verhaegen. “Round-off Error Propagation in Four Generally Applicable, Re-

cursive, Least-Squares Estimation Schemes”. Automatica, 25(3):437-444, 1989.

42



[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

H. Aasnaes and T. Kailath. “Initial-Condition Robustness of Linear Least-Squares
Filtering Algorithms”. TEEE Trans. Autom. Contr., AC-19(4):393-397, Aug. 1974.

B.D.O. Anderson and J.B. Moore. Optimal Filtering. Prentice-Hall, Englewood
Cliffs, NJ, 1979.

M.H. Verhaegen. “Improved Understanding of the Loss-of-Symmetry Phenomenon
in the Conventional Kalman Filter”. IEEE Trans. Autom. Control, AC-34(3):331—
333, March 1989.

T. Soderstrom and P.G. Stoica. Instrumental Variable Methods for System Identifi-

cation. Springer-Verlag, Berlin, 1983.

L. Ljung and T. Séderstrom. Theory and Practice of Recursive Identification. M.1.T.
Press, Cambridge, MA, 1983.

R.J. Fitzgerald. “Divergence of the Kalman Filter”. IEEE Trans. Automat. Contr.,
AC-16:736-747, Dec. 1971.

J.F. Bellantoni and K.W. Dodge. “A Square Root Formulation of the Kalman-
Schmidt Filter”. ATAA J., 5:1309-1314, July 1967.

F.H. Schlee, C.J. Standish, and N.F. Toda. “Divergence in the Kalman Filter”.
ATAA J., 5:1114-1120, June 1967.

G.E. Bottomley and S.T. Alexander. “A Novel Approach for Stabilizing Recursive

Least Squares Filters”. IEEFE Trans. Signal Processing, 39:1770-1779, Aug. 1991.

P.J. Radonja. “Roundoff Noise in Signal Estimation and Minimization of Total Real
Estimator Output Noise”. IFEFE Trans. ASSP, ASSP-38:2075-2087, Dec. 1990.

T. Kailath, A. Vieira, and M. Morf. “Orthogonal Transformation (Square-Root)
Implementations of the Generalized Chandrasekhar and Generalized Levinson Algo-

rithms”. In A. Bensoussan and J. Lions, editors, Int. Symp. on Systems Optimiza-

43



[29]

[30]

[31]

32]

33]

[34]

[35]

[36]

[37]

[38]

tion and Analysis, Rocquencourt, Dec. 1978, volume 14, pages 81-91. New York:

Springer-Verlag, 1979. Lecture Notes in Control and Information Sciences.

D.T.M. Slock. Fast algorithms for Fized-Order Recursive Least-Squares Parameter
Estimation. PhD thesis, Stanford University, Stanford, CA, USA, September 1989.

S. Haykin. Adaptive Filter Theory. Prentice-Hall, Englewood Cliffs, NJ, 1991. second

edition.

H. Lev-Ari and T. Kailath. “Triangular Factorization of Structured Hermitian Ma-
trices”. In 1. Gohberg, editor, I. Schur Methods in Operator Theory and Signal
Processing, Operator Theory: Advances and Applications, volume 18, pages 301—
324. Birkhauser, Boston, 1986.

P. Stoica and A. Nehorai. “On Stability and Root Location of Linear Prediction

Models”. IEEE Trans. ASSP, ASSP-35:582-584, April 1987.

J.M. Cioffi. “The Fast Adaptive Rotors RLS Algorithm”. TEEE Trans. on ASSP,
ASSP-38(4):631-653, April 1990.

P.A. Regalia and M.G. Bellanger. “On the Duality Between Fast QR Methods
and Lattice Methods in Least-Squares Adaptive Filtering”. [EFEE Trans. Signal
Processing, 39:879-891, April 1991.

D.T.M. Slock. “Reconciling Fast RLS Lattice and QR Algorithms”. In Proc. I[CASSP
90 Conf., pages 1591-1594, Albuquerque, NM, April 3—6 1990.

D.T.L. Lee, M. Morf, and B. Friedlander. “Recursive least-squares ladder estimation
algorithms”. TEEFE Trans. ASSP, ASSP-29(3):627-641, June 1981.

B. Friedlander. “Lattice filters for adaptive processing”.  Proceedings [EEFE,
70(8):829-867, Aug. 1982.

G.C. Goodwin and K.S. Sin. Adaptive Filtering Prediction and Control. Prentice-
Hall, Englewood Cliffs, NJ, 1984.

44



[39] P. Van Dooren. “Structured Linear Algebra Problems in Digital Signal Processing”.
In G. Golub and P. Van Dooren, editors, Numerical Linear Algebra, Digital Signal
Processing and Parallel Algorithms, volume F70. Springer-Verlag, New York, 1990.
Proc. of NATO ASI, Leuven, Belgium, Aug. 1-12, 1988.

[40] D.J. Higham and N.J. Higham. “Backward Error and Condition of Structured Linear
Systems”. submitted, STAM J. Matrix Analysis, Sept. 1990.

[41] 1. Gohberg and I. Koltracht. “Error Analysis for Cauchy and Vandermonde Matri-
ces”. In Proc. MTNS, Amsterdam, July 1989.

45



Table I
Backward Consistent Unnormalized FLA Algorithm

co(k) = ro(k) = x(k),v0(k=1) = 10(k) = 1,
ao(k) = fo(k) = Ao(k—1)+|x(k)[*, o k) = d(k)

Prediction Part : for n=1,...,N—1 do

Apoi(k) = AAoi(k=1) + rooa (k=175 (k= 1)efl (k)
en(k) = en1(k) = AL ()81 (k= 1)rnmy (k—1)
ra(k) = rai(k=1) = Apa(k)azly (F)en— (k)
an(k) = an-a(k) = |Apa (k)] B4 (k1)

Bn(k)
)
)
)

Joint-Process Part : for n=0,...,N—1 do

pu(k) = Apu(k=1) + 1o (k) (k)€ (k)

enni(k) = en(k) = p(k)3; " (k)ra(k)
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List of Figures

Figure 1: The manifold M, representing the equality constraints of the structured prob-
lem, and the set S, representing the inequality constraints. We normally consider

only the strict interior of S.

Figure 2: The error system decomposed into its tangential and normal components

(w.r.t. the manifold M).

Figure 3: Simulation of a scalar Riccati equation Ppyqy = Pfj_A for the case of pa-
rameter estimation with exponential weighting (A = 0.99) and initial condition

Py = —0.0095. The innovations variance vanishes, R = 0, for P = —A. The state

estimation error variance converges to P, = 1—A.
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