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Abstract—This paper describes the submissions of the EUREQ®team to the TRECVID 2016
AVS and LNK tasks.

.  INTRODUCTION

EURECOM participated to the TRECVID 2016 Adhoc \ad8earch (AVS) and Video Hyperlinking
(LNK) tasks [1]. We used to participate in the Satita Indexing (SIN) task, but this task was
discontinued. The AVS is a new task (except faia in TRECVID 2008), which required to design and
implement new mechanisms compared to our previarksvin case of the LNK task, we have followed
the approach that was implemented in our 2015 sdom [14], extending it with diverse normalization
schemes.

Il. AVS TASK FRAMEWORK

The AVS task requires to link the textual and viszentents. A topic is expressed as a sentence, and
the task it to retrieve the shots in the test detabwhich correspond to this topic. Four runs can b
submitted, each run being a ranked list of at mg3d0 shots for each of the 30 test topics. Evialnas
performed using the usual Mean Inferred AverageiBicn measure.

For this task, the video collection is the InterAethive IACC. The development data contains the
IACC.1 and IACC.2 parts, which were processed m pinevious SIN tasks. The test data is the new
IACC.3 part, which was released for the first tithis year for the AVS task. The development datae
with spare annotations of 310 concepts, which Haeen done collaboratively during the previous SIN
tasks. The development data represents 1,400 hafuvddeos, about 1 million shots, and test data
represents 600 hours of video, about 300,000 shots.

As examples of possible topics, the 48 querieshef2008 task were provided. However, no other
information was available, in particular, no exaenpf successful images for these topics were dlaila
Yet, different types of submissions were allowetkg of them including the use of automatic tools #ra
available on the internet, provided they do nollide human intervention on the data submitted.

Since the AVS task requires to build models thekt textual and visual data, we explored two possibl
strategies:

» from the text topic, interrogate web image searfjirees to collect examples of relevant pictures,
then use these pictures to build a visual modeigtwim turn will select the best keyframes in the
test database.



» from the test keyframes, automatically generateex tlescription, and then match this text
description with the topic.

These two strategies are illustrated in the follapigure :

Text
annotation

Textual
comparison

Visual
Comparison

In order to implement these strategies, we usedfdi@wing tools and services, which are freely
available from the internet:

* to get example images for a topic, we used the {8ologageSearch engine [2]. This search
engines allows to enter a text query and returtistaof corresponding images. The exact
mechanism to retrieve those images is not publighedever it is likely to be largely based on
the textual context of the pages where these imagjesar. Although a number of other image
search services are available, we limited oursdivahis only one by lack of time. For each
topic, we kept only the first 100 images returnasl,more and more irrelevant images occur
when we go deeper in the result list.

* to get a text description from an image, we usedrse tools:

- the VGG Deep Networks [3], which have been traimed part of the ImageNet
database and can analyze an image to provide goore900 predefined concepts,

- the ImageNet Shuffle [4], which provides classHid¢rained on a larger share of the
ImageNet database, and analyze images to prodamesgor up to 13,000 concepts

- the NeuralTalk [5] package, which generates sestedescribing the visual content of
images.

» to compare visual contents, we compute a visudlifearector for an image by apply the VGG
Deep Network to each image and extract the outgutse one-before-last and two-before-last
layers, to build visual vectors. The similarity Wween visual vectors is computed as the usual
scalar product, sometimes with normalization.

* to compare textual content, we use the GloVe va@presentations of words [6], to build a
textual vector from either the topic descriptidme ttoncept name or the descriptive sentence.
The similarity between textual vectors is again patad as the usual scalar product.

Many combinations of these modules are possiblewels as different values of the parameters
involved. In order to choose the combinations toubed in the final runs, we performed a number of
experiments on the development collection. We evesl systems using the 48 development topics, and
applied them on the development videos. Then, weually annotated the 10 best keyframes returned for
each system and each topic. This gave us someatimtis of which system would have the greater
performance. We observed that the performance ryf diéferent approaches was very depending on the
topic, so in the final runs, we also chose to pie\a selection of the different combinations thattred.



Il. DESCRIPTION OF THEAVS RUNS

A. Generic Architecture

The following figure illustrate the generic arcloiiere that we have put in place, corresponding
modules. The green modules represent text-baseatriafion, the blue modules contain visual
information, the yellow modules represent simijaomputations. We tried various combinations to
define the four runs that we submitted to the fenadluation.
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All our runs are of the “Fully Automatic” categorgince no manual processing was done at any stage,
and with the “D” training type, as we are usinglsoohich were trained on data external to TRECVID.

B. RUN 1 "GoogleSearch + VGG 4K"

For each of the topic, we performed a search uiagGoogle Image engine, and retained the
first 100 pictures of the ranked list. To each image applied the VGG Deep network, and kept
the one-before-last layer as feature vector of dsima 4K. We applied the same visual

processing to each of the TRECVID keyframes intés¢ collection, and ranked them according
to a Nearest Neighbor distance from the Google ésag

C. RUN 2 "ImageShuffle + Glove300"

We used the ImageShuffle system to obtain scores3@®00 concepts, which we used as feature
vectors for each TRECVID keyframe. We used theseescas weights to compute a semantic
vector of dimension 300 by a linear combinatiorthed 13,000 Glove vectors corresponding to
the concepts. For each topic, we constructed arg@naector of dimension 300 by averaging
the Glove vectors of the words appearing in théctophen we used the cosine similarity to find
the images whose semantic vectors were most sitoildse topics.

D. RUN 3 "NeuralTalk + Glove300"

We used the NeuralTalk system to generate textrigéisns for each of the TRECVID
keyframes. Then, we built a semantic vector of disn@n 300 by averaging the Glove vectors of
the words appearing in these descriptions. Weltedsame for the test topics. Finally, we used
again the cosine similarity to find the images whsesmantic vectors were most similar to the
topics.

E. RUN 4 "Global Average"

During the development phase, we experimented avittmber of combinations of the modules
that we have described, using different dimensiatiferent projections, different layers,



different similarity measures. We evaluated thesalinations with a minimal annotation on the
development collections, by pooling the 10 bestupes for each of the training topics. This

gave us an indication of which combinations coutdtite most efficient, and helped us in the
selection of the combinations for the final runsb® submitted. As we noticed that different
combinations had very different performances ofedént topics, we tried to get the best of all
combinations by averaging the results of 32 conthina that we had found to be of reasonable
performance. As the similarity scores are not ablvagomparable between different

combinations, we introduced for each combinatioradificial score computed as the inverse
rank of each image in the result list. The averaighese 32 inverse ranks is the final score for
this run.

IV. AVS RUNS EVALUATIONS
The result (MAP) obtained by our four runs areftiilowing:

TEAM RUN MAP
EURECOM 2 0,024
EURECOM 1 0,011
EURECOM 4 0,01
EURECOM 3 0,002

The following graph shows how they are located inithe full set of (Fully Automatic)
submissions from all participants :
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We can observe that our best run is RUN2, whidiased on the ImageShuffle system, and has
obtained a performance quite similar to the MedlaBMeam (which has developed
ImageShuffle). The runs using Google Search ofulieverage have surprisingly very similar
performance. Run3, based on NeuralTalk, performeite gooorly, probably because of the
mismatch between the test topics and the type mdtations on which NeuralTalk was trained.

The detailed performances of our runs on each &gicshown in the following figures:
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These show that the good performance of RUNZ2 ibabty due to its good score on topic 503,
which is “Find shots of a person playing drums imd&d, although we have no specific
interpretation for this result.

V. LNK TASK FRAMEWORK

Video Hyperlinking task in 2016 kept the main framoek of video-to-video search between
anchor and target segments, with 2 main differentethe dataset was changed (instead of the
professionally created and curated broadcast copi@vided by BBC, a collection of semi-
professional user-generated videos (crawled frabtip.tv website) was used [1]; 2) the anchor
video segments were chosen to reflect the upload&ent and to be of truly multimodal nature,
i.e. a combination of both audio and visual streasnsrucial for the anchor understanding,
processing, and target selection [2].

The video collection consisted of 14,838 items thate taken from the Blip10000 dataset [17].
Released shot segmentation and corresponding keg$ravere extracted at the stage of original
collection creation [24]. As part of the 2016 cotlen release, state-of-the-art automatic speech
recognition (ASR) transcripts [23] and extractesual features were made available to the task
participants. These visual concepts have been rdatairunning the BLVC CaffeNet
implementation of the AlexNet [18], which was traihby Jeff Donahue (@jeffdonahue) with
minor variation from the version described in [1Bar each shot of the video collection a key-
frame is extracted and fed to the deep networkcfassification over the 1000 ImageNet
Concepts. The top five concepts are provided foh éay-frame along with their scores.

As participants, we have also extracted the viseaiures using the same principle (one key-
frame per video shot) with the GoogleNet deep nekvemchitecture [22] which was shown to
provide better accuracy on the ImageNet challenge.

VI. LNK SYSTEM SET UP

A. Generic Architecture

As the task has a new dataset and slightly diffea@chor creation strategy this year, we could
not directly compare the results in case of impletatgon of the same methods as developed in
2015. However, as we are interested in tracing#tterns of video-to-video search performance
across datasets and variety of users interestdidivellow the similar generic architecture in our
approach, adding scores normalization and testimgy wisual features than the ones provided by
organizers.

The system set up is based on the open sourceeil Brformation Retrieval tool that we use for
initial indexing and retrieval, while the rankedtliis further readjusted based on the visual
features extracted for both videos and their cotmedo the audio content, and their contexts
that are defined using word2vec terms proximity.

B. Hyperlinking in Steps

First, we split all the videos in the collectioriarfixed length segments of 120 seconds with a 30
seconds overlap step. We use these sharp time aoesdor all the features calculations, while
we store the information about the start of thstfivord after a pause longer than 0.5 seconds or

a first switch of speakers as the potential jumpamt for each segment of the segments, and
those are used as starting point in the final sabiom runs, as in [19].



Second, we use the open-source Terrier 4.0. Infiom&etrieval platforrh[20] with a standard
language modeling implementation [21], with defdalhda value equal to 0.15, for indexing
and retrieval.

Thirdly, we calculate a set of additional confiderscores that reflect the connection between the
verbal-visual content of both anchor and targeatalbthe retrieved top 1000 segments for each
of the 90 anchors. These confidence scores cafsistomponents, as depicted in Figure below:
a) Average confidence score of terms representiegvisual concepts extracted for all the
frames of the target video that overlap with thenteof the ASR transcript terms of the anchor
video; b) Average confidence score of terms tharagent the context of the anchor ASR
transcript (word2vec top 100 items) and overlaphvigrms representing the visual concepts
extracted for all the frames of the target videp;Awerage confidence score of the terms
representing the visual concepts extracted fahallframes of the anchor video that overlap with
the ASR transcript terms of the target video; dgrage concept score of the terms that represent
the context of the terms representing visual cotsceptracted for the anchor video (word2vec
top 100 items) that overlap with the ASR transcagpins of the target video.
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Final ranking of the target segments for each anet@s based on the combination of the
original Terrier ranking, that reflects verbal-vaklzonnection between anchor and target ASR
transcripts, and the verbal-visual components. Eddhe 5 confidence scores was normalized
and then summed together with either equal weidbtseach component (0.2 for each
component), runs 1 and 4; or with higher priorisgigned to the components using the word2vec
context (0.35 versus 0.1), runs 2 and 3.

Once these segments were re-ranked according tocohnebined confidence score, the
overlapping ones were removed, and this resultédunsubmitted runs.

For 2 runs (1 and 2) we have used GoogleNet vismatepts, and for the runs 3 and 4 we used
the ones provided by the task organizers.

! http://www.terrier.org



VIl. LNK RUNS EVALUATIONS

The results of the submissions were judged at tgmks using a set of metrics: precision at rank
5 (P@5), and its variations (P@5_bin, P@5_tol), MaRd its variations (MAP_bin, MAP_tol),

MAISP [25, 26].

RuniD | P@5 P@5 b P@5 toMAP MAP_bin | MAP tol | MAISP

1 0.3356 | 0.3400 | 0.3244|0.0761 | 0.0926 0.0632 0.1197
2 0.3267 | 0.3244 | 0.3133] 0.0707| 0.0870 0.056] 076.1
3 0.3422 | 0.3422 | 0.3222/0.0709 | 0.0864 0.0571 0.1096
4 0.3511 | 0.3444 | 0.3333/0.0759 | 0.0886 0.0618 0.1154

MAISP metric takes into account the user experiesfdateracting with the multimedia content
which is more time-consuming and demanding compaworthe scrolling of the textual retrieval
results, and according to it all the submitted raresin the top third of the results amongst all
participants, run 1 being the second in the oveaalking.

The fact, that the value of the metric P@5 doesdmastically change when the binning or
window of tolerance are applied (P@5_bin, P@5_toiplies that the result lists demonstrate a
variety of retrieved target video segments withouerlap or segments extracted from the
neighborhood regions of the same videos.
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