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1 Abstract

This year EURECOM participated in the TRECVID 2015 Semantic INdexing (SIN) Task [24]

for the submission of four different runs for 60 concepts, and Video Hyperlinking (LNK) Task

[24] with the four submissions. Our submission to the SIN Task builds on the runs submitted

in the previous years for the 2013 and 2014 SIN tasks, the details of which can be found in [20]

and [19], while the LNK submissions are based on our previous experiments as in [28] and [9].

The major changes for 2015 are the use of new Deep Network models to produce extra

descriptors for the video shots, and the introduction of various fusion schemes at all levels of the

processing, to reduce the problem of overfitting. This year, we did not use our uploader model,

partly because of lack of time, and partly because initial experiments showed only marginal

improvement after the new features were added.

For the LNK Task our approach targeted to connect the textual stream of the videos within

the collection and its vocabulary context, as defined by word2vec algorithm, with the output of

visual concepts detection tools for the corresponding hyperlinks candidates within one frame-

work. We combined visual concepts detection confidence scores with the information about

corresponding word vectors distances in order to rerank the baseline text based search. The

reranked runs did not outperform the baseline, however they exposed potential of our method

for further improvement.

Beside this participation, EURECOM took part in the collaborative IRIM submission, the

details of this contribution is included in the corresponding publication from the IRIM group.

The remainder of this paper briefly describes the descriptors that we have been using, the

training and the various fusion schemes, and the content of the submitted runs; and the frame-

work of the confidence scores combinations used for reranking in the LNK task.



2 EURECOM Basic Descriptors for SIN

We are using the following set of engineered visual features ranging from local features to global

image descriptions.

• Color Moments This global descriptor computes, for each color channel in the LAB

space, the first, second and third moment statistics on 25 non overlapping local windows

per image.

• Wavelet Feature This texture-based descriptor calculates the variance in the Haar

wavelet sub-bands for each window resulting from a 3 × 3 division of a given keyframe.

• Edge Histogram The MPEG-7 edge histogram describes the edges’ spatial distribution

for 16 sub-regions in the image.

• Local Binary Pattern (LBP) Local binary pattern describes the local texture infor-

mation around each point [21], which has been proven effective in object recognition. We

employ the implementation in [2] to extract and combine the LBP features with three

different radius (1, 2, and 3) and get a 54-bin feature vector.

• SIFT from keypoints Two sets of interest points are identified using different detectors:

1. Difference of Gaussian

2. Hessian-Laplacian Detector

For each of the detected keypoints we then compute a SIFT [16] descriptor using the

VIREO system [3]. We use the K-means algorithm to cluster the descriptors from the

training set into 500, 1,000 and 2,000 visual words. After quantization of the feature

space, an image is represented by a histogram where the bins of this histogram count the

visual words closest to image keypoints. We therefore obtain feature vectors of dimension

5,00, 1,000 and 2,000. This run uses only the 2,000 vocabulary.

• Dense SIFT and ColorSIFT We also use a dense sampling for the SIFT and ColorSIFT

descriptors proposed by Koen Van de Sande [33]. We use their software provided in [1].

We created visual dictionaries of size 1,000, 4,000 and 10,000. We pool the quantized

descriptors globally over the whole image. We also consider pooling according to a spatial

pyramid (1, 2x2, 3x1), so that the corresponding feature vectors have a dimension 8 times

the size of the dictionary. This run uses only the 10,000 vocabulary.

• Saliency Moments descriptor This is a holistic descriptor which embeds some locally-

parsed information, namely the shape of the salient region, in a holistic representation

of the scene, structurally similar to [22]. First, the saliency information is extracted at

different resolutions using a spectral, light-weight algorithm [12]. The signals obtained are

then sampled directly in the frequency domain, using a set of Gabor wavelets. Each of these

samples, called ”Saliency Components”, is then interpreted as a probability distribution:



the components are divided into subwindows and the first three moments are extracted,

namely mean, standard deviation and skewness. The resulting signature vector is a 482-

dimensional descriptor [26].

• MEDA We have proposed descriptors based on marginal distributions of the local descrip-

tors. They have the advantage of a faster computation than bag-of-word construction, and

have shown efficient performance. Those descriptors are described in [27].

• ST-MPEG7 This is a spatio-temporal descriptor based on the temporal statistics of the

MPEG-7 Edge Histogram descriptor.

3 EURECOM Deep Networks Descriptors for SIN

We are also using features extracted using Deep Networks. As the training of these networks is

quite computer intensive, at this stage we just rely on the use of existing pre-trained networks.

We have used the following networks, which have been trained on the ImageNet corpus.

• Caffe AlexNet This is one of the models available from the Caffe framework [13]. It

uses the architecture of the network described in [14] and is trained on the ILSVRC 2012

task of ImageNet. We apply this network directly over the development and test sets of

TRECVid. The output of the network is a 1,000 values vector which is used as a descriptor

for each keyframe. We also use the values of the last hidden layer, which is a 4,096 values

vector. This makes our caffe1000 and caffe4096 descriptors.

• VGG Very Deep Networks We use the Very Deep Networks made available by the

Oxford Visual Geometry Group [31]. We use both the 16 layer and 19 layer models. Both

models have been trained on ILSVRC 2012 task of ImageNet. We apply these networks

directly over the development and test sets of TRECVid. From each model, we extract

three descriptors:

– the output of the network, which is a 1,000 values vector corresponding to the concepts

of ImageNet,

– the output of the last hidden layer, which is a 4,096 values vector,

– the output of the second to last hidden layer, which is again a 4,096 values vector.

This provides a total of 6 descriptors from the VGG networks.

Thus we have a total of 8 descriptors which are extracted using Deep Networks.

4 EURECOM Runs for SIN

4.1 Training classifiers

All our runs use SVM classifiers that are trained on the annotations provided by the IRIM

collaborative effort [5]. Because training SVM on large amount of data is expensive, we have



developed a specific training scheme to speed-up the process. This scheme is based on the

use of Homogeneous Kernel Maps [34] which allow to approximate an SVM with a non-linear

kernel by a linear SVM. For further speed-up, the feature values are quantized, with a non-linear

quantization at 10,000 bins, so that the HKM can be precomputed only once. The order of the

Homogeneous Kernel Maps is 5, so each scalar component is translated into a 11 dimension

vector. To train the linear SVMs, we use a variation of the PEGASOS algorithm [30]. Our

implementation is actually capable of training multiple models in parallel, corresponding to

different concepts, or different values of the hyper-parameters. This allows to optimize the

memory accesses to the stored feature vectors of the development set.

The TRECVID development data is split in four folds, we train on three folds and use the

fourth one to select the best value of the hyper parameters. By rotating the folds, this leads to

a set of four classifiers for each descriptor. We also apply Platt’s normalization to transform the

SVM score into a probability.

4.2 Early Fusion

We add to our set of descriptors some new descriptors obtained by early fusion of previous de-

scriptor. First, we concatenate together the small size descriptors (color moments, wavelets, lbp,

edge histograms) to form a single vector with 600 components. This is a simple concatenation

without any selection.

We also build new descriptors by using a selection procedure over the components of all

available descriptors. The criteria to select a component is the conditional entropy of the con-

cepts given the value of the component. The components with the lowest entropy are selected

and included in the resulting descriptor. The selection is done independently for each compo-

nent. We know that this is not optimal, as once a component is selected, we should include its

impact on the entropy of the remaining components, but the resulting computation would be

too expensive. We consider different sizes for the number of components selected, 1,000, 4,096,

and 8,192 components, so that we define three new descriptors in this early fusion scheme.

4.3 Late Fusion Schemes

Late Fusion is performed at various levels of the processing. For each descriptor, we have multiple

models, depending on the folds used in the training, on the normalization into probabilities scores

for a shot of the test data.

• we can average the scores coming from the models trained on different folds,

• we can average the probabilities coming from the models trained on different folds,

• we can compute a probability from the average score,

• we can combine the scores from different descriptors (using linear interpolation with an

SVM),
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Figure 1: Late Fusion Schemes

• we can average the linear models before applying the probability conversion.

Those various schemes are illustrated in Figure 1.

4.4 Submitted runs

Our four runs are organized as follows:

1. Run4: For each descriptor, we average the unnormalized scores coming from models

trained on various folds, then we compute a linear interpolation of the averages with a

SVM. The linear interpolation is performed on a hierarchy of groups of descriptors, using

four groups: all DNN descriptors, all DNN plus the four best non-DNN descriptors, all

non-DNN descriptors, all descriptors. The scores are linearly interpolated within each

group, then the four results are averaged for the final score.

2. Run3: Is it a similar process to Run4, but instead of averaging the scores, we first average

the parameters of the SVM models. Then we also apply a probabilistic conversion. The

resulting probabilities are again grouped in a hierarchy for linear interpolation.



3. Run2: It is again similar to Run4, but using the probabilities instead of the scores. The

hierarchical interpolation process remains similar to the one in the previous runs.

4. Run1: It is a simple average of the scores obtained in the previous three runs. On our

validation set, we found that it provided a slightly better performance.

5 SIN Results Analysis

Run MAP 2014 MAP 2015

Run1 0.2175 0.2398

Run2 0.2025 0.2127

Run3 0.1315 0.2137

Run4 0.1151 0.2404

Figure 2: SIN Evaluation results for our runs in 2014 and 2015
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Figure 3: SIN Results on the test set evaluated by NIST

In Figure 2, we indicate the performances (MAP) of our runs for 2014 and 2015. Those figures

are those provided by the manual evaluation performed by NIST. We can see that the best run



is Run4, meaning that the conclusions that we observed to select Run1 from the development

data did not project to the 2015 test data. As most other groups in TRECVID, the use of other

DNNs has produced an improvement of the performance. The comparison of the performance of

our runs seems to indicate that the conversion to probabilities produced an overfit of the values,

so that the probabilities on the test data are not as efficient as the scores. We plan to explore

this issue further, for example by changing the validation scheme.

In figure 3 we display the comparative performance of the four runs on each of the concepts

evaluated by NIST.

6 LNK framework motivation

The link between an anchor segment of a video and a target video segment in the collection

can vary depending on the information the user is focusing on when choosing an anchor, and

their general knowledge of the topic. As we do not have any information about potential users

and their intentions when defining the anchors, our approach to extract these hyperlink targets

automatically is based on all the available information, i.e. the audio-visual streams of the video

collection. We use and connect both textual representations of the content with the results of

automatic processing of the visual stream.

Recently several approaches did investigate potential to use the visual features when per-

forming the task. In [29] the visual content was used to impose the segmentation units, while

in [6] and [8] the visual concepts were used for reranking of the result list for the hyperlinking

task. However, as the reliability of the extracted visual concepts and the types of the concepts

themselves vary based on the training data and the task framework, it is still hard to transfer

these systems output from one collection or task to another while keeping the same impact on

improvement.

In our experiments we attempt to create this link between the textual content of an anchor

and the visual features of the collection by incorporating the information about the words vectors

distance into the confidence scores calculation. We take into account not only the transcript

words corresponding to the anchor and words assigned to the visual concepts, but also their

lexical context, calculated as close word vectors following the word2vec approach [18]. By

expanding the list of terms for comparison by the lexical context, we attempt to deal with the

potential mismatch of the terms used in the video and those describing the visual concepts, as

the speakers in the videos might not directly describe the visual content, but it might be implied

in the further lexical context of the topic of their speech.

We use the dataset of the Hyperlinking task at TRECVid 2015 [24] that contains both

textual and visual descriptions of the required content, thus we can compare the influence of

words vectors similarity for the cases when we establish the connection between the textual

representation of the anchor and the visual content within the collection, and between the

textual description of the visual request and the visual content within the collection.



7 LNK System Overview

To compare the impact of our approach, we create a baseline run that all further implementations

are based upon.

First, we divide all the videos in the collection into segments of a fixed length of 120 seconds

with a 30 seconds overlap step. We store the corresponding LIMSI transcripts [15] as the

documents collection, and the information about the start of the first word after a pause longer

than 0.5 seconds or a first switch of speakers as the potential jump-in point for each segment,

as in [10].

Second, we use the open-source Terrier 4.0. Information Retrieval platform1 [23] with a

standard language modeling implementation [11], with default lamda value equal to 0.15, for

indexing and retrieval. The resulting top 1000 segments for each of the 100 anchors represent

the baseline result after the removal of the overlapping results.

Third, for these top 1000 segments we calculate a new confidence score that represents a

combination of three values, see Equation 1: i) confidence score of the terms that are present

both in the anchor (CA wi) and in the visual concepts extracted for the segment (CV C wi); ii)

confidence score of the terms that are present both in the anchor (CA wi) and in lexical context

of the visual concepts extracted for the segment (CW2V 4V C wi); iii) confidence score of the terms

that are present both in the lexical context of the anchor(CW2V 4A wi) and in the visual concepts

extracted for the segment (CV C wi). We empirically chose to assign higher value (0.6) to the

confidence score of the first type, as those are the words used in the transcripts and visual

concepts, and lower equal values (0.2) for the scores using the lexical context, see Equation

1. We use the open-source implementation of the word2vec algorithm 2 with the pre-trained

vectors trained on part of Google News dataset 3 (about 100 billion words), cf. [17]. We take

the top 100 word2vec output for consideration, remove the stop words from both the query and

the word2vec output, and run Porter Stemmer [25] on all lists for normalization.

Finally, the new confidence score values are used for the reranking of the initial results, these

are filtered for the overlapping segments, and the jump-in points of the segments are used as

start times.

ConfScore =

∑NA V C
i=1 (CA wi ∗ CV C wi)

NA V C
∗ 0.6+

+

∑NA W2V 4V C
i=1 (CA wi ∗ CW2V 4V C wi)

NA W2V 4V C
∗ 0.2+

+

∑NW2V 4A V C
i=1 (CW2V 4A wi ∗ CV C wi)

NW2V 4A V C
∗ 0.2

(1)

1http://www.terrier.org
2http://word2vec.googlecode.com/svn/trunk/
3https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUT

TlSS21pQmM/edit



Method ID
MAP

MAiSP
overlap bin tolerance

Baseline 0.2179 0.2130 0.1471 0.2020

Oxford 0.1154 0.1039 0.0699 0.1055

Leuven 0.1009 0.1075 0.1067 0.1067

CERTH 0.1248 0.1164 0.0725 0.1152

Table 1: LNK official metrics results

8 LNK Experimental Results

Table 7 show the official evaluation results of the created runs. The first line represent the

results for the baseline run, while the other lines are naming the systems which produced the

used visual concepts detection output: Oxford [7], Leuven [32] or CERTH [4].

9 Conclusions

This year EURECOM presented a set of systems for the Semantic INdexing and Video Hyper-

linking Tasks. We introduced extra descriptors using Deep Neural Networks trained on ImageNet

for the SIN task, and noticed that they produce an improvement on the performance of the de-

tection of concepts in TRECVID shots. The effect of the various fusions schemes that we have

used this year will deserve extra experiments to draw firm conclusions. LNK experiments showed

that the connection of textual and visual features through the combination of confidence scores

needs further analysis and tuning in order to improve over the baseline performance.
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