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Abstract—There has been a big challenge in structured peer-
to-peer overlay network research area. Generally, a structured
overlay network involves nodes evenly or based on their
resource availabilities, and gathers nodes’ resources to achieve
some bigger tasks. The challenge here is to gather resources
based on nodes’ interests, and only interested nodes are involved
in a certain task.

Toward this challenge, we propose a new scheme to a peer-
to-peer publish/subscribe network. Publish/subscribe represents
a new paradigm for distributed content delivery. It provides
an alternative to address-based communication due to its
ability to decouple communication between the source and the
destination. We propose a Bloom filter based mapping scheme to
map IDs to nodes’ interests in addition to new interest proximity
metric to forward events and to build nodes’ routing tables. We
also propose a new approach called “shared interest approach”
for network discovery.

To evaluate the algorithms proposed in this work, we
conducted simulations in both static and dynamic settings, and
found a low false positive rate. We also discuss about a well-
known application called Twitter, and show how our scheme
would work in a real environment.

I. INTRODUCTION

Publish/subscribe systems have received a lot of attention
in the last years as they allow efficient, distributed and
selective content delivery to a potentially large set of users. In
such systems, users register subscriptions representing their
interests in content while publishers inject events which are
delivered to the matching subscribers.

There are two common types of publish/subscribe sys-
tems:

• Topic-based, which rely on a set of predefined topics to
which subscribers register their interests: all messages
related to a particular topic are broadcast to all registered
users;

• Content-based, which allow subscribers to specify any
filter over the entire content. A data event specifies
values for a set of attributes associated with the event.
Subscribers thus, register their interests in form of filters
that are used by the system to deliver relevant events to
the subscribers.

In this paper, we focus on content-based publish/subscribe
systems. Many applications require content-based pub-
lish/subscribe systems with fine grained expressiveness: for
example, real-time stock quotes notification, Internet games
and sensor network applications, to name a few. However, the

implementation of such systems has remained a challenging
issue.

Most content-based systems employ an overlay network of
event brokers, which support rich subscription languages (e.g.
SIENA [1], [2]). However, they commonly have two draw-
backs. Firstly, a broker should maintain large routing tables.
Indeed, every broker can be an intermediate relay on the paths
of an event dissemination tree and should match each incom-
ing event against every known subscription. Secondly, these
systems require static overlay networks where the brokers are
highly reliable and under administrative control, or assume
the entire broker set to be known beforehand [3]. Scalability
and reliability issues affecting content-based schemes have
been addressed in the literature using system design inspired
from the peer-to-peer (P2P) paradigm. Several implemen-
tations of content-based systems have been investigated in
the literature, for instance Meghdoot[4], Mirinae [5], or
HOMED [6]. Although these proposals address scalability
and reliability issues, they whether have low overhead but
involve not interested nodes in event dissemination [5], [6],
[4], or they engage only interested nodes but generate a large
amount of overhead (e.g. [7] where nodes use gossiping for
membership management and routing table construction).

In this paper, we propose a new peer-to-peer content-
based publish/subscribe scheme based on structured overlays.
Our system aims at involving only interested nodes in event
dissemination while ensuring a low overhead. In order to
do so, we map nodes’ interests to their identities (IDs)
using Bloom filters, and we use a novel proximity metric.
This metric is used to cluster nodes according to their
subscriptions’ similarity. Therefore, events will be directly
posted to the proper cluster where they are going to be
disseminated efficiently. Indeed, our scheme ensures an upper
bound of routing table size that only depends on the size of
a node’s ID. Furthermore, application overhead is reduced
thanks to a new approach to network discovery.

The remainder of the paper is structured as follows: we
present related works in Section II. Section III describes the
design and the algorithms used by our system. We present
a simulation-based evaluation of our system in Section IV
and an analytical approach to evaluate application overhead
in Section V. We then discuss a use case in Section VI. We
conclude in Section VII.



II. RELATED WORK

The first implementations of content-based
publish/subscribe systems used a network of event brokers
to implement distributed content based routing: SIENA[2]
and KYRA [8]. Although these approaches can support
rich subscription languages, they have two main limitations.
Firstly, they require static networks which lead to un-
optimized network topology. In other words, the network
topology should cope with the changing nodes’ interests
in order to reduce network congestion and minimize
routing depth. This means that for an optimized design,
the network of the brokers should be dynamic. Secondly,
in these approaches, a broker keeps a large amount of
routing information and generates a considerable amount
of overhead in order to perform routing and to minimize
notifications relaying. A broker needs to keep track of the
changing state of its clients as they issue new or cancel
subscriptions so that it reflects perfectly its clients’ interests.
Although summarization using Bloom filter and aggregation
using covering relation and merger are currently used to
reduce notification overhead, a leaving node could generate
a lot of overhead since it has to forward all the subscriptions
it covers.

Other implementations rely on a peer-to-peer architecture
in order to achieve self organization and robustness. In
a peer-to-peer system, all participants act as subscribers
and publishers but, in addition, they also route notification
among themselves. Some approaches implement content-
based routing on top of DHTs. Terpstra et al. [9] used
Chord [10] combined with filter-based routing algorithms
(merging and covering) in order to attenuate the overhead
generated by event broadcast. A variant based on CAN [11]
was implemented in [4]. The nodes build a multidimensional
DHT and maintain information about the coordinates of their
zones and store coordinate information of their neighboring
zones. The idea behind these schemes is to have a rendezvous
node for each event. Rendezvous nodes act as an entry point
to a distinct overlay network composed by the group of
interested nodes. Other approaches aim at clustering nodes
semantically using an interest proximity distance to route
the events introduced into the overlay and to build routing
tables. Some implementations intend to have a mesh-like
structure for event dissemination [5], [6] and use the ham-
ming distance combined with a hypercube overlay to route
and to disseminate events published by different nodes. In
[7], nodes maintain semantic links to nodes with which they
share some interests. Moreover, [7] uses gossip algorithms for
membership management and provides nodes with random
links that represent a partial view of the overlay to ensure
connectivity.

Our proposal is also based on the semantic approach.
We aim at clustering nodes based on their interests: in our
system events are forwarded using new interest proximity
metric while application overhead is reduced through a new
mechanism for network discovery.

Fig. 1. Process to compute the semantic identifier of a node.

III. OVERLAY DESIGN AND EVENT DISSEMINATION

This section outlines our content-based publish/subscribe
system. Our goal is to organize nodes semantically in a man-
ner that only interested nodes in event e will forward it while
minimizing the overhead due to membership management
and network discovery.

In the remainder of this section we will make extensive
use of the following definitions:

Definition 1. Filters: a filter denotes the set of subscriptions
issued by a given subscriber.

Definition 2. Coverage: a filter F1 covers F2, iff N(F1) ⊂
N(F2) where N(F ) is the set of notifications that match the
filter F .

Definition 3. Mergers: merger operation consists of deriving
new filters from existing ones such that each new filter covers
the set of filters it was generated from.

We now describe the method to assign a “semantic” ID
to a node, which is inspired by [5]. In our system, we
partition the event space Ω into cells ci of a regular grid.
The process of partitioning the event space depends on
the publish/subscribe application. For instance, in a stock
quote application, the partitioning could correspond to a
price/company’s name partitioning.

Specifically, consider a set Sn = {ci, ci∩S 6= ∅}. We use
k independent hash functions h1, ..., hk, each with range 1 to
d. The bits at position h1(ci), ..., hk(ci) in IDn are set to 1
for each cell ci ∈ Sn. As an event has a single cell ce, its ID
is set to 1 at positions h1(ce) , ..., hk(ce). Figure 1 illustrates
the process of generating a semantic ID for a node.

Assigning IDs using this approach renders the semantic
clustering easier, as the similarity between two nodes can be
estimated using the distance between two IDs. Moreover, this
ID fulfills a very important property: if a node N is covered
by another node M , its IDM subsumes all 1s of IDN .

Since node IDs obtained with this method might not
be unique, we could concatenate an additional vector to
distinguish nodes whose original ID collide. Instead, we
organize nodes with the same ID in a cluster that will be
transparent to other nodes that have a different ID. Hereafter,



we refer to this ID by IDsemantic.
Moreover, we assign to each node a random ID uniformly

drawn from a large identifier space: this ID comes in addition
to its IDsemantic.

A. Building the routing tables

The main challenge in peer-to-peer publish/subscribe sys-
tems is how to build a routing table that would ensure no
false negatives and at the same time involve only interested
nodes in event dissemination. To do so, we use an interest
proximity metric which is the product of the inverse of an
affinity and the hamming distance normalized by the size of
the IDsemantic digest d. The distance between two nodes N
and M in the network graph G is:

d(N,M) =
dhamming(N,M)

d×A(N,M)
(1)

A(N,M) represents the affinity between nodes N and M
and is computed according to the following expression:

A(N,M) =
|Sn ∩ Sm|

min(|Sn|, |Sm|)
(2)

where Sn refers to {ci, ci ∩ S 6= ∅} and ci is the ith cell
of the grid obtained by partitioning the event space S and
the subscriptions issued by N . Furthermore, |Sn| refers to
cardinality of the set Sn.

The distance defined in Equation 1 allows a given node
N to connect to the nodes that cover its interests with the
smallest hamming distance. Formally, given two nodes N
and M , N connects to M when:

M ∈ G , M covers N and →
dhamming(N,M) = min{dhamming(N,K),K ∈ G}

We note that when two nodes N and M do not share any
interests, the distance d(N,M) will be infinite:

ifSn ∩ Sm = ∅ ⇒ d(N,M) =∞

In our system, nodes are organized in a containment
hierarchy based on covering relationship. Hence, every node
N in the network has three types of bidirectional links:
covering links, which correspond to links to nodes that cover
N , covered links which refers to links N keeps to nodes it
covers, and neighbor links that correspond to links N keeps
to nodes with which it shares part of its interests. In the
following, we present how a node in the overlay picks its
neighboring nodes:

• Covering links: A node N connects first to the closest
node in term of hamming distance which covers its
interests, this latter is the parent of N .

• Covered links: N goes through the nodes it knows in
increasing order of the random ID (looping when it
reaches the maximal sequence ID) and selects a node
only if it intersects N’s interests at some region not
yet covered by the already selected covered nodes. This
process is then repeated in decreasing order.

• Neighbor links: N keeps links to nodes with which it
shares a part of its interests. The process of picking
these links is identical to the covered links.

Algorithms 1 and 2 illustrate how covering and covered
links are created, where we introduce the following notation:

• nodes to add(N) denotes all nodes that N has discov-
ered and used to build its routing table.

• N ⊃ M denotes that N covers M interests. N ⊂ M
denotes that N ’s interests are covered by M. Similarly
N + M means that N does not cover M ’s interests.

• t{N1, ..., Nk} denotes the mergers of N1 ... Nk

Algorithm 1 Building the overlay -Covering Nodes-
for all N ∈ G do

for i ∈ nodes to add(N) do
if i ⊃ N then

if

dhamming(i,N) <

dhamming(covering node(N), N)

then
covering node(N)← i

end if
end if

end for
end for

Algorithm 2 Building the overlay -Covered Nodes-
for all node N ∈ G do

Initialize covered nodes(N)
Sort nodes to add(N) in increasing order of random ID
for node i ∈ nodes to add(N) do

if n ⊃ i ∧ t(covered nodes(N)) + (N) then
if i ⊃ some of N ’s interests not covered yet by
covered nodes(N) then

covered nodes(n).add(i)
end if

end if
end for
sort nodes to add(N) in decreasing order of random ID
for node i ∈ nodes to add(N) do

if n ⊃ i ∧ t(covered nodes(N)) + (N) then
if i ⊃ some of N ’s interests not covered yet by
covered nodes(N) then

covered nodes(n).add(i)
end if

end if
end for

end for

Our overlay construction mechanism ensures a published
event to be delivered to all interested nodes with high
probability. Furthermore, the routing table size is upper-
bounded, as derived in the following proposition:



Proposition 1. The routing table size in the overlay has an
upper bound of 2 × d + c, where c is a constant parameter
referring to the number of covering links a node N can have
and d is the size of the IDsemantic digest.

Proof: If node N has n bits set to 1 then it will have
d − n neighbors when Algorithm 1 loops over IDrandom

in increasing sequence order and another d − n neighbor
links when Algorithm 1 loops over IDrandom in decreasing
sequence order, at most.

Moreover, N will have n covered links when Algorithm
2 loops over IDrandom in increasing sequence order and an-
other n covered links when Algorithm 2 loops over IDrandom

in decreasing sequence order, at most.
It is also clear that N has c covering links.
Therefore, N will have 2d+ c entries in its routing table,

at most.

B. Event dissemination

In this work, we cluster the overlay network semantically:
hence, every node connects to neighbors with shared inter-
ests. When an event reaches a matching node N , N relays
the message to its neighbors that match the event. Our system
differentiates between two types of messages:

• Multicast: When a node N receives a Multicast mes-
sage, it sends a Multicast message to its covered nodes
and neighbor nodes that match the event.

• Forward: Upon the receipt of a Forward message, a
node N sends a Forward message to its covering and
covered nodes, as well as to its neighbor nodes that
match the event.

Unlike the works in [5], [6] that rely on a technique to
make node IDs unique (as the uniqueness of the semantic
IDs cannot be guaranteed), we cluster nodes with the same
semantic ID and to organize them into a logical ring1. Each
ring will have the IDsemantic identifier of the member nodes.
A leader labeled primary node is assigned to each ring: the
primary node acts as a relay point between the nodes on the
ring and the outer nodes. Therefore, the cluster is transparent
to the outer neighbors that will only point to the leader. When
the primary node receives an event which it is interested in,
it forwards the event on the ring. Leader election is based on
joining time: the first node joining a cluster is automatically
elected as a primary node. If a primary node fails or leaves,
the node that joined the cluster after the failing or leaving
leader is elected as the next cluster leader.

C. Membership management

In current peer-to-peer publish/subscribe systems, network
connectivity and network discovery is achieved by space
splitting and gossip-based membership management. The
use of the former approach leads to engaging nodes in
disseminating events they are not interested in with high
probability. The latter approach allows nodes to maintain
random views for membership management but generates a

1Note that the logical ring is not a DHT.

large amount of overhead due to the periodic exchange of
views between different nodes.

Our system relies on a new approach we called shared
interest approach. In this approach, all nodes have a common
subscription. This common subscription renders possible to
find a route between any two nodes in the network which al-
lows nodes joining the network to find their closest neighbors
semantically. This common subscription can just be presented
as a fixed bit that is set to 1 in IDsemantic of all nodes.

Join: When a node N joins the network, it contacts a
bootstrap node that is already a member of the system. In this
work we gloss over the details of how system bootstrap is
achieved: for example, a list of well-known bootstrap nodes
could be published on a separate communication channel.
The bootstrap node routes the join query using the distance
we defined earlier. The join mechanism takes several steps
until the routing table of N converges. The number of these
steps depends on the number of bits that are set to 1 in the
IDsemantic. If we assume that subscriptions are uniformly
random, the number of these steps will be on average d

2
where d is the size of IDsemantic.

Once N receives the first join reply, it will build its routing
table based on the one it receives from the replying node,
and then it will send another join query but this time it will
advertise a new ID which represents the interests that are not
covered yet by its current neighbor links.

When a node M replies to the join query issued by N it
proceeds as following:

• if N covers M , M checks if N is closer than some of
its covering links.

• if M covers N , M checks if N covers part of its
interests not covered yet by its covered links.

• if N shares just a part of M ’s interests, M checks if
N covers part of its interests not covered yet by its
neighbor links.

In each of these cases, M updates its routing table.
If there are nodes in the network which have the same

IDsemantic as the joining node N , N will join the cluster
defined by its IDsemantic and copy the routing table from
one of the nodes that has the same IDsemantic.

Leave: When a node N leaves the network or fails, the
nodes that point to N will update their routing table based
on the routing table of N . These nodes will use merger and
covering relationships to update their routing table.

We implement a heart beat mechanism in order to detect
failed nodes. When a node N fails, the first node detecting
the failure notifies all the nodes pointing to N which we call
incoming links. These incoming links are piggybacked in the
heart beat messages.

IV. EVALUATION

We built a discrete event-based simulator, which does not
model packet loss and assumes unlimited bandwidth along
all the links. In the following, for ease of presentation, we
make the case for a stock quote application. In Section VI,



we will focus on a different and popular Internet application,
Twitter.

The events in a stock quote application are generated by
various stock exchanges where trading occurs and the sub-
scribers are clients interested in the price of the stocks they
trade. Without loss of generality, events in our simulation
are mapped to a 2-dimensional event space. In fact, there are
well-known methods to map a multidimensional space to one
dimensional space using a space filling curve [5].

In our simulations, an event corresponds to the value
of these attributes (stock-name, price) and a subscription
corresponds to (stock-name, low price, high price).

Metrics: In our evaluation, we will focus on the following
metrics:

• Delivery depth: this metric account for the number of
hops required by a node to receive events it is interested
in. We evaluate this metric as it mirrors the delay that
an event takes to be disseminated;

• Routing table size: this metric measures the size of
routing tables stored at each node. Small routing table
sizes are preferred as they indicate the ability of a
publish/subscribe network to scale with system size;

• False positives ratio: A false positive is defined as an
event received by a node not interested in it. As we
partition the event space and we use Bloom filters, this
metric allows us to evaluate the amount of overhead our
approach generates.

Parameter space: With the goal of collecting statistics on
the average delivery depth and on the routing table sizes, we
ran simulations while varying the network size. We assume
a uniform, random distribution of users’ subscriptions. In all
the experiments we conducted the IDsemantic size is 1024
bits.

Furthermore, we evaluate the impact of the distribution of
users’ subscriptions on false positives and routing table sizes
by varying its skewness. We first simulate uniformly random
subscriptions. Then we focus on subscriptions distributed
according to a Pareto law x−a: we vary the distribution
skewness by varying the coefficient a ∈ [1, 4]. For these
experiments we ran simulations in an overlay of up to 4000
nodes in which every node publishes at most 10 events

In order to gain statistical confidence in our results, we
conducted 10 simulation runs for each experiment.

A. Static settings

We ran simulations while varying the network size. We
assume a uniformly random distribution of subscriptions.

Figure 2.(a) shows the average delivery depth we mea-
sured as the system scale increases: we observe that the av-
erage delivery depth growth can be roughly approximated to
a logarithmic growth. Figure 2.(b) illustrates that the average
routing table size stabilizes with system scale. Indeed, when
the size of the network is small, nodes are not able to build
complete routing tables whose mergers cover their interests.
Hence, when the size of the network grows the size of the
routing tables do so. When the size of the network becomes
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(b) Routing table size in static settings.

Fig. 2. Evaluation of our system in a static setting with uniformly
distributed subscriptions and with a size of IDsemantic of 1024 bits

large, the nodes are able to build routing tables that cover
their interests and thus, the size of the routing table will not
vary drastically.

Figure 3 shows that the percentage of false positives de-
creases with subscriptions popularity. Figure 4 shows that the
process of building routing tables depends on the distribution
of interests when the size of the network is large and the
routing table size decreases with subscriptions popularity.
These observations indicate that our system would prove
effective when considering realistic system sizes, which can
be safely assumed to be large.

B. Dynamic settings

We now study the impact on delivery depth and routing
table size of dynamic settings. We assume nodes join the
network at random point of time.

In this work, we do not simulate node departures since
our main focus is on the scalability of the overlay network,
presented by the average delivery depth and the size of
routing table. Moreover, as the incoming links of a node
are piggybacked in the heartbeat messages as discussed in
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Section III, the nodes in the network will be able to update
their routing table whenever one of their neighbors leaves or
fails.
As the Figure 5.(a) shows, the size of the routing tables
is larger than in the static setting: indeed, a node N does
not have global knowledge of the network when it builds its
routing table, hence the routing tables are not optimal. As the
number of hops is inversely proportional to the size of routing
tables, we notice that the delivery depth of events is slightly
smaller than the one observed in the static setting, yet the
logarithmic growth is preserved, as Figure 5.(b) illustrates.

These results indicate the ability of our system to cope
with system dynamics.

V. ANALYSIS

In this section, we are interested in comparing our ap-
proach to the work presented in [5]. We present a theoret-
ical approach to estimate the overhead generated by both
schemes. We limit the comparison to [5] as we think it is the
closest scheme to ours; both schemes rely on Bloom filters
for ID assignment but differ in overlay building and event
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Fig. 5. Evaluation of our system in a dynamic setting with uniformly
distributed subscriptions and with a size of IDsemantic of 1024 bits

dissemination. As [5] and our system use both Bloom filters
we can safely assume they generate the same amount of false
positives that depend on the size of Bloom filter used and the
event space.

The work described in [5] might involve un-interested
nodes in forwarding events while nodes in our system send
multiple messages to correctly join the overlay. We thus
estimate the overhead generated by both approaches. We will
use the following notation:

• d refers to the size of IDsemantic.
• n denotes the number of nodes in the overlay.
• λjoin and λpublish denote the join rate and the publica-

tion rate respectively.
• k denotes to the number of join messages sent at each

round.

Proposition 2. On average, our scheme generates k × d
2 ×

lnn× λjoin join messages.

Proof: We assume that the overlay graph is a random
graph. In this case the diameter of the graph will be O(lnn)



where n is the number of nodes. For a node N with m
bits in its IDsemantic digest set to 1 there will be m join
messages generated in the worse case. If the interests are
distributed uniformly at random we can safely assume that
the probability for a given bit in the IDsemantic digest to be
set to 1 is 1/2.

Therefore, on average we will have k× d
2 × lnn× λjoin.

Proposition 3. The overhead due to event dissemination in
[5] amounts to:

p× lnn× λpub

where p is the probability that node N gets an event that it
is not interested in.

Proof: A node N will forward an event e that is not
interested in if it is in the path of this event. This happens
if its ID cover matches the event. This could occur if one of
the bits that are set to 0 in its ID digest are set to * in the
ID cover.

Let N be a node with m bits set to 1 and pm the
probability that node N gets an event that it is not interested
in, given m bits of N ’s ID are set to 1. Then:

pm = 1− (1− 1

d
)d−m (3)

where 1
d is the probability that one of the d bits is set to *.

Furthermore, let qm be the probability that m bits of N ’s
ID digest are set to 1. Then:

qm = Cm
d

1

d

m

(1− 1

d
)d−m (4)

eventA = N gets an event that it is not interested in

eventB = m bits of N’s ID are set to 1

Pr(eventA ∩ eventB) = pm × qm (5)

Let p denote the probability that node N gets an event
that it is not interested in. Then

p =

d∑
m=0

pm × qm (6)

As described in [5], the event dissemination happens in
lnn steps on average therefore: p× lnn×λpub approximates
the overhead generated by event dissemination.

We now illustrate the impact of system parameters on the
overhead generated by our system and the one described in
[5]. There two important parameters we focus on are the join
rate λjoin and the publication rate λpub. If we assume that
λpub is larger than λjoin, our scheme performs better. Such
an assumption holds in practice if we rely on a system model
where nodes remain on-line for reasonably long periods of
time [3].

Figure 6.(a) shows the overhead as a function of the
number of nodes: when k × d

2 × λjoin < p × λpub, our
scheme generates less overhead than [5]. Moreover, Figure
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6.(b) shows the overhead as function of λpub

λjoin
: we observe

that [5] performs better up to a threshold which corresponds
to λpub

λjoin
= k×d

2×p after which our scheme performs better.

VI. A USE CASE FOR PUB/SUB SYSTEMS: TWITTER

We now try and address the question of whether our
pub/sub system would fit applications in which a very large
number of users maintain relationships to a potentially vast
set of followers by updating their status. A prominent exam-
ple of such an application is Twitter [12]. In the following,
we extract user data by crawling Twitter and derive realistic
publish/subscribe patterns that are then fed to the simulator
described in Section IV.

A. Twitter: a microblogging tool

As remarked in previous research [13], [14], Twitter is
a new communication tool often called microblogging, in
which users post messages of 140 characters without spec-
ifying the destinations of the messages and read messages
filtered by users’ interests. Twitter is designed to relay new
messages to users in a near real-time fashion: a user sees



a notification of a new message without any actions (a.k.a.
push). The number of active users in Twitter is estimated
to be 18 million in the United States2. Twitter can be cast
as a publish/subscribe application, characterized a variety of
users’ interest patterns, a near real-time nature, and its very
large scale. In this work, we make the case for a peer-to-
peer based architecture to implement the same functionality
delivered today through a client-server system design.

Before we discuss some properties about Twitter, let us
introduce some terminologies in Twitter.

• Status: a short message posted by a user (a.k.a. Tweet).
• Public timeline: all the status messages sorted in a

timeline.
• User timeline: all the status messages posted by a

certain user sorted in a timeline.
• Follow: an action that represent a user’s interest to

another user. If a user A follows a user B, B is called
a friend of A, and A is called a follower of B.

• Hashtag: a keyword in a status starting with “#” for
easy search.

B. Twitter subscription traces

A subscription in Twitter is labeled Follow, which implies
a user is interested in receiving status updates posted by
another user. Some users follow a handful of their real
friends, whereas some follow many not-acquainted users.
To understand the distribution of follow subscriptions, we
crawled the Twitter application: we collected a 24-hour trace
of the public timeline with a 1 minute granularity during
Nov. the 1-th 2009. Because the public timeline is collected
for 24 hours, we expect that the collected data represent a
good sample of full public timeline, even though each public
timeline includes only 20 statuses3. In our data, we observed
27196 unique users: for each of these users we gathered
the number of friends except for 1674 of them who had a
protected profile. Figure 7 shows the histogram of the number
of friends with the upper bound of 2000 friends which
excludes 725 users. We estimated the Pareto distribution
of the subscriptions, and found the Pareto shape parameter
a = 0.6719. We ran a single simulation as described in Sec-
tion IV-A with this coefficient. The result of this simulation
shows that the average routing table size is 15.357 and the
average false positives ratio is 0.1454. Those numbers are far
smaller than those with the uniform distribution, and realistic.
Hence, we conclude that our system is potentially suitable to
be used as status notification architecture for Twitter.

C. Twitter event traces

To gain a deeper understanding of the behavior of our
peer-to-peer pub/sub system, we conducted trace-driven sim-
ulations using real event data as collected from the Twitter
application. The data consist of user and friend relations,
but they are very sparse. Therefore, we filtered the data by

2http://www.emarketer.com/Article.aspx?R=1007271
3This 20 limit per minute is because of the Twitter cache for performance

reasons.
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selecting users that have at least one friend in our data. The
filtered data include 10927 users, and the Pareto distribution
of the number of friends is estimated with a = 0.3294,
which indicates the distribution is relatively more uniform
but the popularity still exists. Figure 8 shows the relationship
between the number of friends and the routing table size
for each node, out of the simulation result. Each point in
the figure represents a node. We found an overall correlation
between the number of friends and the routing table size, and
some exceptions where a node has a big routing table even
with a few friends. A closer look at the exceptions reveals
that those nodes have many neighbors in their routing tables
and they are likely to be primary nodes. Figure 9 shows the
relationship between the number of friends and the incoming
messages for each node, out of the simulation result. Similar
to Figure 8, the correlation can be observed. It is worth to
note here that this is one of the major contributions of our
system; if users have less friends they get less messages, if
they have more they get more. Although there is an open
question about reducing exceptions, we conclude our system
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should work well for Twitter-like applications.

D. Twitter interest traces

Twitter has a functionality that allows users to search for
status updates in the system based on their interests. Although
users can search statuses by arbitrary words or phrases,
1hashtags are often used for search keywords for a historical
reason4. Hashtags are embedded in users’ statuses, and they
essentially explain the users’ interests. To understand the
distribution of hashtags, we collected larger public timeline
from Oct. 21st 2009 3:56pm until Nov. 16th 2009 9:17pm
in Japan Standard Time. Even though the data is not very
complete due to the Twitter API limit control and network
problems, it is collected uniformly over the period. The
number of collected statuses is 690229 and the number
of unique hashtags extracted from the statuses is 22344.
We extracted only alphabetical and numerical hashtags of
4 characters to 16 characters, and searched latest 15 statuses
for each valid hashtag. We then estimated a publication rate
for each hashtag by linear least square fit. Figure 10 shows
the histogram of the publication rate. Note that the x-axis
represents the number of publications per day in logarithmic
scale. The result indicates that there are some hashtags that
are used very often, but most of hashtags are not likely
to be used in common. This means users in Twitter have
very diverse interests, and publish/subscribe system are not
very good at the diverse interests because of too many
subscriptions. Hence, we conclude that our system should
be combined with a DHT-based lookup functionality or a
centralized indexing-service to support (arbitrary) keyword-
based search.

VII. CONCLUSION

In this paper, we presented a new peer-to-peer approach
for publish/subscribe systems. Our scheme can build a se-
mantic overlay based on nodes’ interests and disseminate

4Search functionality was not implemented when Twitter was firstly
released, and the use of hashtags is invented by user community.
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events using new interest proximity metric. The novelty of
our approach is that it ensures only interested node to be
involved in event dissemination while the overhead is low
as we do not use any gossiping protocol. We conducted
simulations with synthetic events and showed low false
negative and false positive rates. Furthermore, we analyzed
data collected from a popular Internet application, Twitter,
and showed that our distributed architecture is suitable to a
large extent to be used as an update notification substrate.
We believe our work to constitute a solid grounding for
the development of peer-to-peer based, large-scale update
notification systems over the Internet.
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