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Abstract— The communication between a multiple-antenna UL, based on which the BS first builds an estimate of the UL
tfaf;?”;ittﬂ and mU“i%'e ferEiVG_FS _(ft_Jsersl) Witn eith%rt? Sh%{;’_ or channel which in turn serves as an estimate for the downlink
multiple-antenna each can be significantly enhanced by praging ; i
the channel state information at the transmitter (CSIT) of the nggnm n the. nex;thDLl Sl(l)(t [E;]' If? freqluency dlv!t5|0n dtl.»plf
users, as this allows for scheduling, beamforming and multiser ( ) scenarios, the a_c or channe re.CIpIFOCI y_ motivates
mu|tip|exing gains_ The traditional view on how to enable CS$T instead the use of a dedicated feedback link in which the user
has been as follows so far: In time-division duplexed (TDD) conveys the information about the estimated downlink ckgnn
systems, uplink (UL) and downlink (DL) channel reciprocity ~pack to the BS. Recently, several interesting strategiee ha
allows for the use of a training sequence in any given uplink peen devised for how to best use a limited feedback channel

slot, which is exploited to obtain an uplink channel estimag. . . . .
This estimate is in turn recycled in the next downlink slot. and still provide the BS with exploitable CSIT [7], [8], [9].

In frequency-division duplexed (FDD) systems, which lack te Although in the past, the balance has weighed in the favor
UL and DL reciprocity, the CSIT is provided via the use of a of FDD systems when choosing a duplexing scheme (in part
dedicated feedbgck link ofllimited capacity between the regivers pecause of heavy |egacy issues in voice oriented 2G networks
and the transmitter. In this paper, we focus on TDD systems 5nq 150 because of interference management between UL and
and put this classical approach in question. In particular, we DL), current discussions in the standardization group&ate
show that the traditional TDD setup above fails to fully expbit & ) ) - h
the channel reciprocity in its true sense. In fact, we show an increasing level of interest for TDD for upcoming wiredes
that the system can benefit from a combined CSIT acquisition data-access networks (e.g.WiMax, etc.), caused partlytdy i
strategy mixing the use of limited feedback and that of a traning  advantages in maintaining system flexibility with respemt t
sequence. We demonsrate the potential of our approach in@s ) anqg DL traffic loads, and mostly because TDD systems
of improved CSIT quality under a global training and feedback _ . L 4
resource constraint. are seen as more efficient in providing the CSIT reqwred _by
several MIMO DL schemes, thanks to the channel reciprocity.
|. INTRODUCTION In this paper, we focus on the problem of CSIT acquisition
Multiple-antenna transmitters and receivers are instntale in a TDD system. We take a step back and shed some
to optimizing the performance of bandwidth and power limitecritical light on the traditional approach above consigtin
wireless communication systems. In the downlink (DL), iexploiting channel reciprocity via the use of training seqoes
particular, the communication between a multiple-antenexclusively. In fact we show that this approach fails toyull
enabled base station (BS) and one or more users with eithengloit the channel reciprocity. The key idea is as follows:
single or multiple antenna each can be significantly enflchnoshen sending a training sequence in the UL of a traditional
through the use of scheduling, beamforming and power dDD system, the user allows the BS to estimate the channel
location algorithms, be it in single user or multi-user modby a classical channel estimator (it can be a least-squag (L
(spatial division multiplexing). To allow for beamformingestimator or minimum mean square error (MMSE) based,
and/or multi-user multiplexing capability, the BS trantii just to name a few). However, note that the user itself has
must however be informed with the channel state informatidghe knowledge of the channel coefficients (from the previous
of each of the served users [1], [2], except when the numH8aL transmission slot) but, regretfully, does not exploitth
of users reaches an asymptotic (large) regime in which cdsswledge in order to facilitate the CSIT acquisition by the
random opportunistic beamforming scheme can be exploitB&. Instead, it uses this knowledge only for its own detectio
[3], [4]. This has motivated the proposal of many techniqugmirposes.
for providing the channel state information at the transenit  Interestingly, by contrast, in FDD systems, the user ex-
(CSIT) in an efficient manner. Proposals for how to providploits its channel knowledge by quantizing the channel and
CSIT roughly fall in two categories depending upon the chossending the result over a dedicated feedback link (actually
duplexing scheme for the considered wireless network. én ttJL bandwidth can be used for this feedback along with UL
case of time-division duplex (TDD) systems, it was proposathta transmission). In this case, UL training is used by the
to exploit the reciprocity of the uplink (UL) and DL channglsBS solely for UL data detection as this UL training cannot
so as to avoid the use of any feedback channel [5], [6]. Tigéve any direct information to the BS about the DL channel
way reciprocity is exploited, in the current TDD systems, isoefficients. Actually in FDD systems, UL and DL portions
through the use of a training sequence sent by the user on diehe bandwidth are normally selected quite apart and hence



channel realizations over respective bandwidths can kedysafunit-variance entries angly; € C* is the observation sequence
assumed to be independent of each other, so there is no ¢hadneng this L-length interval.
reciprocity in FDD systems. If we want to use the above DL system equation for channel

We propose that, while dealing with TDD systems, there &stimation, for identifiability ofd/-dimensional channel at the
a clear opportunity to combine both forms of CSIT acquisiiser’s side, the length of the transmitted data (which wdneld
tion strategies. As a result, we investigate a scheme mixittte training sequence in this case) should be larger #fathe
classical channel estimation using training with the use afimber of BS transmit antennas. Based upon the knowledge
dedicated limited feedback carrying information about thef the transmitted datX4q; (the training sequence) and the
quantized channel. This gives us a framework for fully utiebserved sequenge;, the user can estimate the DL channel
lizing the channel reciprocity in a TDD setup and it improveb using various techniques. The LS estimate would be
the classical trade-off between CSIT estimation accuracy a - "
training/feedback resource usage. We characterize thmalpt hrs = Xgyar- @
CSIT acquisition structure and then propose a sub-optinghe user can make a better channel estimate using MMSE
outage rate based approach which helps us to optimize Higeria, and the estimate is given by
fixed resource partitioning between training and quantized 1
feedback phases. The results obtained confirm our intuition hyvinvise = XIH (XdIXIH +IL) Ydi. 3
and demonstrate the potential of this hybrid (mix of tragnin
and quantized feedback) approach for upcoming TDD systerli the above equatiory, is the identity matrix ofZ. dimen-

The paper is structured as follows: System model is given #P"S-
section I, followed by_classical C_SIT acq_ui_sition in TDDA&AN |11 cLassICAL CSIT ACQUISITION IN FDD AND TDD
FDD systems in section Ill. Optimal training and feedback ] ] ) .
combining strategy is explained in section IV with outage We now brlefly_ review the classical approaches for acquiring
based optimization framework in section V. Simulation tesu ©S!T at the BS in FDD and TDD systems.
appear in section VI followed by conclusions in section Vi, Fpp Systems
Notation: £ denotes statistical expectation. Lowercase letters
represent scalars, boldface lowercase letters represeitirg,
and boldface uppercase letters denote matrigés. Af, A1,
AT denote the transpose, the Hermitian, the inverse an
pseudo-inverse of matriA, respectively. For a vectet, ||a||
anda represent, respectively, its norm and unit-norm directi
vector so that = ||a||a.

In FDD systems, the mobile station first obtains the DL
channel estimaté as described in the previous section. Then
{'heneeds to quantize the channel using some pre-selected
codebook. Quantization is a well-studied subject and aflot o
0\Mell developed techniques are available in literature azkh
been implemented in practical wireless systems) Ifienotes
the quantization function, then for the DL channel estiniate
its quantized version (which is actually the index of theselst
channel code in the codebook) is given @yh). Afterwards

We consider the two way communication in a cell betweegser maps this index (sequence of bits) into a sequence of
a single BS, equipped with/ antennas, and a single antenngonstellation symbols, using the mapping function denbted
mobile user. The channél € CM is assumed to be flat- §. Hence the feedback of the DL channel would be
fading with independent complex Gaussian zero-mean unit- .
variance entries, wher€" represents thel\/-dimensional xq = S(Q(h)), 4)
complex space. We assume block fading channel so eggh. .o

channel realization stays constant orsymbol intervals [10] ajized constellation symbols representing the infororatif

which can be accordingly partitioned between UL and Dio qiantized channel. As we explained earlier, the barttaid
data transm|55|on_s. Exten5|on_s to OFDM(A) and multi-usgjscated for UL and DL transmissions in FDD systems are
systems are possible and straightforward. _ uite far apart and channel realizations are assumed to be

The goal of this paper is to provide a reliable estimate gfqenendent. Hence to decode the feedback properly, BS first
the DL channel to the BS, which in turn can be used fQ{geqs to estimate the UL channily(e CM). If x, € C1xTe

beamforming/precoding purposes. However we focus on thenqtes the normalized training sequence of leffgthn the

II. SYSTEM MODEL AND CSIR ACQUISITION

q € €T is the T, dimensional row vector of nor-

acqu_isition issue of t_he_channel knowledge and not about i direction, the signal received at the BS f@f, symbol
use in MIMO t.ransmlssmn- schemes. intervals is given by
In the downlink, the received signal at the user fosymbol
intervals is given by Ya = VP hyXa + Na, (5)
yai = Xaih + ngj, (1) WwhereN, € CcMxTa represents the spatio-temporally white

Gaussian noise an¥, € CM*7- s the received signal at/
whereXq; € C¥*M is the signal transmitted by the BS duringantennas of the BS during thig,-length training interval P
L symbol intervals (satisfying BS power constrainty, € C© represents the user's peak power constraint. After obsgrvi
is the complex Gaussian noise with independent zero-me¥g, the BS can make an estimdig of the UL channeh,,



knowing x,. Same estimation techniques like LS or MMSE The second stage consists of transmission of quantized

as described in the previous section can be applied. channel (digital feedback), already known at the user,Tfpr
Now if user transmits the quantized channel feedbagln symbol intervals and the received signal will be

the UL, BS can decode this information, having an estimate Y, - \/thq + NG, (10)

h, of the UL channeh,,.
_ (See eq. (6) for the dimensions of all parameters.)

Yq = VP huxq + N, () wherexq = S(Q(h)). This equation reveals the intriguing
where Y, and Ny are M x T, matrices of the received aspect that BS needs to acquireNow h behaves as channel
signal and the noise respectively &f antennas of the BS and also appears ixq. BS can try to decode only the
during this explicitT, length feedback interval. So based upoquantized channel information based upon the knowledge of
the estimate of UL channéh, and the received feedbackhs, eg. (9), obtained through training as
Y, BS tries to recover the DL channel feedback (quantized . . _ 2
version,xq4) using the optimum (although relatively complex) hq = argxfnn [IYq = VP haxq|l*. (11)

maximum likelihood sequence estimation technique. The optimal CSIT will be obtained by the joint estimation

h = argmin |[Yq — VP h,S(Q(h))|? (7) and detection (oh and x4) based upon the observation of

h Y. andY,, knowingx,, involving an optimal split between

Actually the search space will be restricted to the codebodke training and the quantized feedback phases (constrame
hence the BS, at best, can estimate the quantized versiorfpf+ T, = T').

the channel. o

h=argmin || [Ya Yo] - VP h[xa x4] [> (12
B. TDD Systems h,xq,Ta

If the communication system is operating under TDD modé&he optimal solution requires a double minimization andsdoe

DL and UL channels are reciprocal, henhg = h. So if a Not seem to bear a closed form expression HorTherefore
user transmits pilot sequence on the UL (like eq. (5)), trecepting some sub-optimalities, we give a framework in the
simple (UL) channel estimation at the BS furnishes CSIT duext section, based upon the idea of outage rate, which sllow
to UL and DL channel reciprocity. In the past, this has bedf to obtain a simplified solution for the hybrid approach.
the classwallway of gettln_g.(.:SIT in TDD §ystems [5], [6]. We V. OUTAGE BASED TRAINING AND FEEDBACK
show that this CSIT acquisition through pilots alone, alitjio PARTITIONING
very simple, is not the optimal resource utilization for TDD

systems. . Definitions and Initial Setup

In this section, we give a strategy, under some assumptions,
IV. OPTIMAL TRAINING AND FEEDBACK COMBINING IN  \yhich allows optimizing the partitioning of the feedback
TDD SYsTEMS resource between the training and the quantized feedback.
Our system of interest operates under TDD mode and toFor the digital feedback part, we employ vector quantizatio
improve the CSIT quality is the issue that we focus on. Thather than scalar quantization of individual channel fioef
classical training based only CSIT acquisition ignoresfdw cients. We restrict the user to quantize the unit-norm ckhnn
that user knows the DL channel and CSIT acquisition basditection vector and feed it back. In single-user scenarios
only on the quantized channel feedback does not use chargtennel direction information (CDI) is sufficient to beamrfo
reciprocity whereas in TDD systems both can be exploited @ivard user which focuses all energy in the user's direction
the same time. Even in multi-user broadcast scenarios, CDI plays the kiy ro
We propose a novel hybrid two stage CSIT acquisition strads BS can decide to beamform to selected users (maximum
egy which exploits the channel reciprocity and user’s clenmratio combining) or it can try to beamform so as to render
knowledge at the same time. Working under a constraint tife zero interference at each of the selected users (salcalle
fixed resource available for CSIT acquisitioff’s; symbol zero-forcing strategy) and all of this just requires the GiDI
intervals and user's power constraint @f), our strategy the selected users. For the quantization of channel dinesti
consists of dividing this interval in two phases. The firsiget it has been shown that Grassmannian codebooks are the
of this hybrid approach is the transmission of training ssge optimal choice but the formation of such codebooks is quite
from the user to the BS foff;, symbol intervals and the complicated from medium to large sized codebooks [11]. On
received signal will be the other hand, random vector quantization (RVQ) codebooks
are easy to obtain, they have been shown to achieve very good

Ya = VP hxa + Na. (8) performances and very nice closed form expressions for the
(See eq. (5) for the dimensions of all parameters.) guantization error are also known [8], [12]. So our analysis
The optimal training based estimate based upon the obserasdumes the use of RVQ codebooks for CDI quantization.
signal Y ,, knowingx,, will be The solution for the optimal CSIT estimat,in eq. (12),

requires joint estimation and detection along with an ofam

. ) B 9
h, = argﬁnm 1Ya \/]_DthH ©) tion over the resource split between training and feedback.



Even if we focus separately on training based estiniate first inequality is obtained asl%#ﬁ(h,ﬁ) is upper-bounded by
(givenin eq. (9)) and digital feedback based estinbeégiven | ang the second inequality is obtained by adding.
in eq. (11)), two questions arise: i) how the CSIT acquisitio \we select this upper bound of mean-square CSIT error
interval Ty, should be split between training and feedback?s the performance metric and minimize it following the
and ii) how the two estimates should be combined to get {gnsiraints on the total feedback interval and user's power
final estimate? o constraint, obtaining the optimal values f@t,, 7, and b
Embracing some sub-optimalities, we propose the use @he number of bits/symbol - this parameter governs the
quantized feedback based estimhgas the final CSIT esti- constellation size and hence quantization error). Theltesu
mateh. Apparently it gives the impression that training baseghys obtained show the superiority of this hybrid approach
estimateh, goes wasted but in reality quantized feedbagk over the classical training based only CSIT.
which provideshg, is decoded based upon this training based For RvQ, the exact expression for the mean-square quanti-
estimateh,. This answers the 2nd question above. For the 1stion errors? has been given in [12], [8] as
guestion, we have to wait till the next subsection.
The choice of selecting the digital feedback as the final 02 = 283 (23 M ) (15)
CSIT estimate makes it clear that the quantization errofr wil 1 "M—-1)’

always sneak in the final estimate. Apart from this smallerro here B is the total number of bits used for feedback (i.e.

(depends upon how many bits are used for quantization), e B A
incorrect detection of digital feedback will wreck a havac f codebook ha™ codes) andj represents the beta function

the final CSIT estimate. As the channel stays constant fdr eavlg‘(rl')%r(]b)ls SSIICV?" I:sfr;nie?:/ (ssi?nrglrgaa;l:jn;g?\? uﬂ s;;al;)b:un q

feedback interval, we are dealing with slow fading channel(a+b)
for which deep channel fades (causing outage) are the ﬂypigglen in reference (8]
error events [13]. . _ _ o2 < 27 (16)

This two stage outage based strategy consists of first provid K
ing a training based estimate to the BS in the training irtervPutting the value o067 using B = bT, in eq. (14), we get the
of lengthT,. In the second interval of length;,, user sends upper bound of average CSIT error as
the quantized version (using RVQ) of its unit-norm channel Cor
direction vector which we assume to be perfectly known at the 0% <271 4. a7
user. We suppose that channel statistics are such that ¢éne us ) _ ]
can send bits per symbol interval with an outage probabilityhis equation shows us the basic trade-off involved. If more
of e. Sob is the e-outage rate of the UL channel (see [13Putage is allowed in the system, the outage batgll increase
for details). That means the user can send a totabof b7}, allowing the user to select a larger codebook (vath code
feedback bits at outage. Now the user should mdp bits Words whereB = bT;) but in this case final CSIT estimation
over T, constellation symbols to transmit on the UL channegrror will be plagued by outages as for a lot of realizatioiss B
Although the constellations used in practice haVepoints won't be able to decode the feedback correctly. On the other
where b must be a positive integer, for the time being wdand, if almost no outage is allowed, this condition will ask
allow positive real values fob. the user to transmit at a pessimistic rateorresponding to

We define the CSIT error as thin of the angle ¢) between V€Y bad channel conditions. Hence there will be fewer code
the true channel direction vectds and the BS estimated Words in the codebook and, in this case, CSIT estimate at the
- BS will be of poor quality due to large quantization error.

direction vectorh, denoted as2(h, h).
o2 (h, ﬁ) — sin?() = 1 — cos?(8) = 1 — |ETf1| (13) B. Training and Feedback Resource Split Optimization

Pilot sequence transmission from the user to the BS for an
When the channel is notin outage and the BS is able to decog@rval of lengthT,, given in eq. (8), can be equivalently
the feedback correctly, there is only quantization erron Owritten in a simplified form as
the other hand, when the channel is in outage (happens with
probability €), BS cannot decode the feedback information. Ya =V PT, h+n,, (18)

Hence average CSIT errof can be written as ) .
where P is the user’s power constraint ang, h, n, are the

o = (1—e€)o, +eo> -(h, h) received signal, the chapnel vector and the noise respégctiv
) h#h all column vectors of dimension/. BS can make MMSE
< (1- ﬁ)f"q te estimateh, of the channeh as
< g te (14) X T
9 . . a=— 5 1 Ya- (19)
whereo; represents the mean-square quantization error and PT, +1

o a h) represents the mean-square CSIT error when tag channel entries are i.i.d. standard Gaussian, MMSE esti-

channel is in outage (which means feedback error occurs). Tination errorh, = h — h, has also i.i.d. Gaussian distributed



entries ash, ~ CN (O, oﬁIM), whereIy; represents thd/- whereF~1(.) is the inverse of the standard cumulative distri-
dimensional identity matrix and mean-square estimatioarer bution function (CDF) ofy3,, distributed variable.

per channel entry? is given by Finding the above expression, which relates the outage rate
1 of digital feedback with the training lengti,, we can put
o2 = Tl (20) formally our optimization problem (the minimization of the
@ mean-square CSIT error given in eq. (17)) as follows:
Similarly the estimateh, has i.i.d. Gaussian entries and is ' —b(T},~Ta)
distributed ash, ~ CA/ (o, P’;TLIM) min {2 e A 6] (28)

Now we focus our attention on the digital feedback interval
of the CSIT acquisition, given in eq. (10). The signal reediv
during one symbol interval of this phase is given by

where we have usefly, = T, + 7T, andb is given by eq. (27).
The constraints for this minimization are:
T,>1

Ta < T'b (29)
= VP hz, + 21 - d
Ya T T Bay (21) e>0 , <1 (30)
Wherez, represents the scalar constell_atlon §ymbo| transm,'&bart from these, the user has to take care of its UL power
ted by the user angq,h,ng are M-dimensional column

: ; . constraint. The analytical solution to the above optinigrat
vectors representing respectively the observed signakmoél
. ; : : Problem does not bear closed form expression but its nuaideric
and noise for this particular symbol interval. To decodes th0 timization is quite trivial.
information, BS uses the estimdig that it developed during P q
the training phase. So the above equation can be written as VI. SIMULATION RESULTS

Vq = VP hazy + VP hazy + ng. (22) Our simulation _environmen'F consi_sts of a BS witlh = 4
antennas and a single user with a single antenna. The channel
Average signal-to-noise-ratio (SNR) at the BS with channelodel is same as described in Section II. The feedback iterv
h, known can be computed to be Ty is fixed to 20 symbol intervals for all simulations. The
optimization of the objective function described in thevyioels

SNR(ﬁa) — M (23) section gives us the values for the optimal training lerifith
Poz +1 and the optimal outage rabdor various values of user’s power
Putting the value o&2, SNR will become constraint, which is equal to the UL SNR as noise at every BS
) antenna has been normalized to have unit variance. We have
SNR () — P|lha|? (24) plotted the optimal values of training lengh, corresponding
2 P__ 41 values of quantized feedback interv&) and outage raté in

PT,+1

We can do the magnitude scaling of the estimated channe%J
vector h, so as to convert|h,||? in a standard chi-square
random variable havin@M degrees of freedom (DOF), de-
noted asx3,,. So the SNR becomes

P2T, ,
2(P + PT, + 1) 2"

This equation has been obtained by dividing and multiplying
the right hand side of the preceding equation¥- =— as

Tot1)
%Hhaﬂ2 actually represents the sum of square bf

real iﬁdependent zero-mean unit-variance Gaussian Vesiab
which is a standard chi-square random variable &itth DOF.

¢, the outage probability of this channel corresponding to
outage raté, can be written as

SNR(x3u) = (25)

——T,= Training Sequence Length (Symbol Intervals)| |
—— Tq = Quantized FB Length (Symbol Intervals)
b = Outage Rate (bits/Symbol)

M?
0 5 10 15 20 25 30
Uplink SNR - dB

Lengths—(Nb of Symbols) / Outage Rate—(bits/symbol)

e = Pllog (1 + SNR(x3)) < 0]
PQT Fig. 1. Optimal Lengths and Outage Raf€;;, = 20 and M = 4. With
= Pllog —X2M < (26) increase in SNR, both the length of quantized feedbackvater; and the
2(P+ PT,+1) outage rateb increase gradually.

whereP denotes the probability of an event. This relation can
be inverted to obtain the outage ratecorresponding to the
outage probability, as given below

Knowing the values ob and7,, computed based upon the
optimal values off, ande, allows us to compute the upper
bound of the final CSIT error eq. (17). These values have
b—1o ( n P27, 1(6)) 27) been plotted in dB scale in Fig. 2. For comparison purpose,
=108 2(P+ PT,+1) ’ we have also plotted the CSIT error when classical training



spans the full interval reserved for CSIT acquisition. Thisxtra bits are used as parity bits and help combat the channel

plot clearly shows the interest of our hybrid two-staged TSInoise and outages. This point is the focus of ongoing rebearc
acquisition strategy as, from medium to large SNR valueand results will be presented elsewhere.

CSIT error incurred by this scheme is much less than the error
obtained by training based only CSIT acquisition. At low SNR

VII. CONCLUSIONS

We presented a novel approach of acquiring CSIT at the

for the DL transmission in a reciprocal TDD MIMO

communication system. Traditional CSIT acquisition in TDD
systems relies on the use of training sequences in an UL slot.
This approach fails to fully exploit the channel reciprgdity

ignoring the shared knowledge of an identical channel betwe
BS and the user. Instead, we propose a strategy combining
the use of a training sequence together with a limited feekiba
channel. For the transmission of the quantized feedback,
ergodic rates are far beyond the reality due to stringerdydel

constraints. We characterize the optimal CSIT acquisition
setup and give an outage-rate based approach which allows
the optimum partitioning of resource between the trainind a
the quantized feedback. Superior performance is demdedtra

due to better exploitation of the reciprocity principle aB8I1T

BS
o
o
L the
S
]
=
7]
O
—&— CSIT Error for Classical Training Only
-70+ CSIT Error for Proposed Hybrid Scheme
O CSIT Error with Practical Constellations
-80 i i i i i
0 5 10 15 20 25 30
Uplink SNR - dB
Fig. 2. Mean-Square CSIT Error§ls;, = 20 and M = 4. Novel hybrid

scheme performs much better than classical training ba&#dl &cquisition.
Gains are significant even with naive use of practical cdiasitens without
any coding.

(1]
values, this two stage scheme performs worse than thertgpini

quality improves significantly.
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