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Abstract— The problem of multi-user receiver design in direct sequence
single antenna- code division multiple access (DS-CDMA) uplink net-
works is studied over multipath channels. An exact expression for the
bit error rate (BER) is derived and an algorithm is proposed for finding
the finite impulse response (FIR) receiver filters such that the exact BER
of the active users is minimized. The algorithm performance is found for
scenarios with different channel qualities, receiver filter lengths, near-far
effects, and channel mismatch. The proposed FIR receiver structure has
significant better BER with respect to Eb/N0 and near-far resistance
than the corresponding minimum mean square error (MSE) filters.

I. INTRODUCTION

CDMA is a multiple access technique where the user separation is
done neither in frequency, nor in time, but rather through the use of
codes. However, the frequency selective fading channel destroys in
many cases the codes separation capability and equalization is needed
at the receiver. Since the start of the 90’s, multi-user detection [1],
[2], [3] has provided different multi-user receivers with different per-
formance/complexity trade-offs. Usual target metrics concern either
maximizing the likelihood, the spectral efficiency or minimizing the
mean square error. In many cases, analytical expressions of the multi-
user receivers can be obtained which depend mainly on the noise
structure, the impulse channel response, and the nature of the codes.

In the present work, minimum BER is used as a target metric for
designing the DS-CDMA receiver filters. Various works, see, e.g., [4],
[5], [6], have minimized BER with respect to the receiver parameters
(mainly the channel impulse responses in a perfect synchronized
system) when the receiver is modeled by a memoryless transform.

In this contribution, a general framework based on the discrete-
time equivalent low-pass representation of signals is provided. In
particular: i) Exact BER expressions are derived for an uplink multi-
user DS-CDMA system. ii) The receiver has one FIR multiple-
input single-output (MISO) filter for each user, and the significant
performance improvements achieved using receiver filters with finite
memory are demonstrated. iii) An iterative numerical algorithm is
proposed based on the BER expression for finding the complex-
valued minimum BER FIR MISO receiver filter coefficients, for given
spreading codes and known channel impulse responses. The additive
noise on the channel can be colored and complex-valued. iv) Several
properties of the minimum BER filters are identified.

II. DS-CDMA MODEL

A. Special Notations

In this article, all the indexing begins with 0. Let A(z) =∑η
i=0 a(i)z−i be an FIR MIMO filter of order η and size M0×M1.

The matrix a(i) is the ith coefficient of the FIR MIMO filter A(z)
and it has size M0×M1. The row-expanded matrix A obtained from
the FIR MIMO filter A(z) is an M0 × (η + 1)M1 matrix given by:
A = [a(0) a(1) · · · a(η)]. Let q be a non-negative integer. The
row-diagonal-expanded matrix A

(q) of the FIR MIMO filter A(z)
of order q is a (q + 1)M0 × (η + q + 1)M1 block Toeplitz matrix
given by:

A(q) =

⎡
⎢⎣

a(0) · · · a(η) · · · 0
...

. . .
. . .

. . .
...

0 a(0) · · · · · · a(η)

⎤
⎥⎦ . (1)
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Fig. 1. (a) DS-CDMA transmitter number i, and (b) DS-CDMA receiver
part designed for decoding user number i.

Let ν be a non-negative integer. The symbol n is used as a time
index in this article and n is an integer. Let y(n) be a vector
time-series of size M × 1. The column expansion of y(n) of
order ν has size (ν + 1)M × 1 and is defined as: y(n)(ν) =[
yT (n), yT (n − 1), · · · , yT (n − ν)

]T
.

B. System Experienced by User Number i

It is assumed that the input si(n) sent by user number i ∈
{0, 1, . . . , N −1} is an independent and identically distributed time-
series, uncorrelated with the additive channel noise and the data
sequences sent by the other users. The transmitted sequences si(n)
are BPSK modulated signals, such that si(n) ∈ {−1, +1}, with
equally likely symbols. The information symbols si(n) are spread
with a spreading code having spreading factor M . Let the vector W i

be an M ×1 vector containing the spreading code for user number i.
The vector W i is an FIR single-input multiple-output (SIMO) filter
with zero order that increases the sampling rate of the original
signal by the factor M . It is assumed that the receiver knows the
values of all the vectors W i, and they can be chosen arbitrarily,
i.e., W i ∈ C

M×1, where C denotes the set of complex number.
Figure 1 (a) shows the ith transmitter of the DS-CDMA system
and the DS-CDMA receiver part that is designed to decode user
number i is shown by Figure 1 (b). In Figure 1, z−1 is the delay
element, z is the advance element, ↑ M is expansion with factor
M meaning that M − 1 zeros are inserted between each sample,
and ↓ M is decimation by M . All these four building blocks
are standard elements in digital signal processing [7]. In order to
produce the M × 1 vector y(n) from a scalar time-series y(n),
see Figure 1 (b), the following blocking structure is used y(n) =
[y(nM), y(nM+1), · · · , y(nM+M−1)]T , where the operator (·)T

denotes transposition. The input sequence xi(n) to the ith channel,
see Figure 1 (a), is stacked into a M × 1 vector xi(n) accord-
ing to xi(n) = [xi(Mn), xi(Mn + 1), · · · , xi(Mn + M − 1)]T .
The spreading operation may be written as xi(n) = W isi(n).
Let p be a non-negative integer. Using the previous notations, the
(p + 1)M × 1 vector xi(n)(p) can be expressed as xi(n)(p) =

W i
(p)

si(n)(p), where W i
(p)

= Ip+1 ⊗ W i has size (p + 1)M ×
(p + 1), where ⊗ is the Kronecker product, and si(n)(p) =
[si(n), si(n − 1), · · · , si(n − p)]T has size (p + 1) × 1.



The ith user has the following scalar multipath channel transfer
function: Ci(z) =

∑L
k=0 ci(k)z−k. The maximum order of all N

channels is L. It is assumed that L ≤ M . When L ≤ M , it is
shown in [8], that the equivalent FIR MIMO channel filter Ci(z) of
size M × M has order q = 1, when the blocking and unblocking
operations in Figure 1 are used. Ci(z) is given by: Ci(z) = ci(0)+
ci(1)z

−1, where the two matrix channel coefficients are given by

ci(0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ci(0) 0 0 · · · 0
... ci(0) 0 · · · 0

ci(L) · · · . . . · · ·
...

...
. . . · · · . . . 0

0 . . . ci(L) . . . ci(0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

ci(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · ci(L) · · · ci(1)
...

. . . 0
. . .

...

0 · · · . . . · · · ci(L)
...

...
...

. . .
...

0 · · · 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

The channel is assumed to be corrupted by zero-mean additive
Gaussian complex circularly symmetric noise, denoted v(n), which
is independent of the transmitted signals. The additive channel
noise vector v(n) of size M × 1 can be expressed as: v(n) =
[v(Mn), v(Mn + 1), · · · , v(Mn + M − 1)]T . The channel noise
is assumed to have known second-order statistics, which might
be colored in general. The autocorrelation matrix of size (l +
1)M × (l + 1)M of the (l + 1)M × 1 vector v(n)(l) is defined

as Φ
(l,M)
v = E

[
v(n)(l)

(
v(n)(l)

)H
]

, where the operator (·)H

denotes complex conjugated transposed. Let the variance of the
components of the complex Gaussian circularly symmetric additive
channel noise v(n) be given by N0 = 1/M Tr

{
Φ

(0,M)
v

}
, where

Tr{·} is the trace operator. The average energy per bit Eb at the input
of the channels is given by Eb = 1/N

∑N−1
i=0 E

[
xH

i (n)xi(n)
]

=

1/N
∑N−1

i=0 W H
i W i. Let the channel condition be defined as the

value of the energy per bit to noise ratio, i.e., Eb/N0.
The desired signal at the output of the receiver filter number i is

di(n) = si(n− δ), where δ ∈ {0, 1, . . . , l + 1} denotes the decision
delay and δ is equal for all N users. Receiver filter number i takes
the M × 1 input vector y(n) and produces a scalar as its output,
see Figure 1 (b). The size of the ith receiver filter is 1×M , and its
transfer function Ri(z) is given by

Ri(z) =

l∑
k=0

ri(k)z−k, (3)

where ri(k), of size 1×M , is filter coefficient number k of receiver
filter number i. The order l is assumed to be fixed and known. Since
uplink is considered, the receiver is trying to estimate the transmitted
bits from all of the N users by means of N FIR MISO receiver
filters. At the output of the FIR MISO receiver filter Ri(z), a decision
device is used to recover the original data information bits. The blocks
denoted DEC(·) estimate the output bits ši(n) by taking the real
value of a complex-valued sequence ŝi(n) and then a hard decision
is made returning +1 if ŝi(n) is non-negative and −1 if ŝi(n) is
negative. The used memoryless decisions units are suboptimal and
better performance can be obtained if more advanced soft decoding
techniques are employed.
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ŝN−1(n)
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Fig. 2. Block model of the N users DS-CDMA system.

C. Block Description

A block description of the DS-CDMA system is shown in Figure 2.
All the input signals of the system are assumed to be jointly wide
sense stationary (WSS).

D. Input-Output Relationship

The row-expanded FIR filter, of size 1 × (l + 2), from the input
of transmitter number i to the output of the receiver filter number i
is given by Ri C i

(l)
W i

(l+1). The received signal vector y(n) can
be expressed as

y(n)=

N−1∑
i=0

C i W i
(1)si(n)(1)+v(n), (4)

where the vector si(n)(l+1) has size (l + 2) × 1.
Let the vector si(n) have size (l + 2)N × 1 and be defined

as: s(n) =

[(
s0(n)(l+1)

)T

,
(
s1(n)(l+1)

)T

, · · · ,
(
sN−1(n)(l+1)

)T
]T

.

The (l + 2)N × 1 vector s(i)(n) is defined as: s(i)(n) =
s(n) (s(n))(l+2)i+δ = s(n)si(n − δ).

The convolution of the zero order FIR SIMO filter W k and the
first order FIR MIMO channel transfer function Ck(z) is denoted
by Bk(z), and Bk(z) has size M×1, and order 1. The row expansion
of Bk(z) is given by Bk = Ck W k

(1), and Bk , Ck , and
W k

(1) have size M × 2, M × 2M , and 2M × 2, respectively. The
row-diagonal expansion of Bk(z) of order l is given by Bk

(l)
=

Ck
(l)

W k
(l+1), and Bk

(l), Ck
(l), and W k

(l+1) have size (l+1)M×
(l + 2), (l + 1)M × (l + 2)M , and (l + 2)M × (l + 2), respectively.
Let the matrix T be defined as: T =

[
B0

(l)
, B1

(l)
, · · · , BN−1

(l)
]
.

and it has size (l + 1)M × (l + 2)N .
The output of the ith receiver filter at time instance n is denoted by

ŝi(n) and it is given by ŝi(n) = Ri y(n)(l). It follows from (4), that
y(n)(l) is given by: y(n)(l) =

∑N−1
k=0 Ck

(l)
W k

(l+1)
sk(n)(l+1) +

v(n)(l). The overall expression for the output signal of receiver filter
number i can be written as

ŝi(n) = Ri T s(n) + Ri v(n)(l). (5)

E. Minimum MSE Receiver

The average MSE over all the N users is defined as MSE =
1/N

∑N−1
i=0 MSEi, where MSEi is the MSE of the ith user: MSEi =

E
[|ŝi(n) − di(n)|2]. It can be shown that MSEi is given by

MSEi = Ri Φ(l,M)
v (Ri )H + 1 − Ri T e(l+2)i+δ

− (e(l+2)i+δ)
HT H(Ri )H + Ri T T H (Ri )H , (6)

where ek is the unit vector of size (l+2)N × 1 with +1 in position
number k and zeros elsewhere. By using derivation with respect
to R∗

i , where ∗ means complex conjugation, the minimum MSE
receiver filter number i is given by:

Ri = (e(l+2)i+δ)
T T H

[
T T H + Φ(l,M)

v

]−1

. (7)



F. Noise-Free Eye Diagrams

There exist 2N(l+2) different realizations for the vector s(n). Let
sk(n) be one of these vectors s(n), where k ∈ {0, 1, . . . , 2N(l+2) −
1}, and define the (l + 2)N × 1 vector s

(i)
k (n) as s

(i)
k (n) =

sk(n) (sk(n))(l+2)i+δ, where the operator (·)k denotes component
number k of the vector it is applied to. Whenever the index k is not
required, s(i)(n) might be used to denote one of the s

(i)
k (n) vectors.

Since (sk(n))k ∈ {−1, 1}, the vector s(i)(n) will always contain
+1 in the vector component number (l + 2)i + δ. Therefore, there
exists a total of

K � 2(l+2)N−1, (8)

different s(i)(n) vectors. Let the symbol t
(i)
k (n)

(l)
denoting the kth

vector of size (l+1)M ×1, be defined as: t
(i)
k (n)

(l)
� T s

(i)
k (n). As

seen from the right-hand side of (5), t
(i)
k (n)

(l)
is the column vector

expansion of order l of the noise-free input vector to the receiver, of
size (l + 1)M × 1, when the vector s

(i)
k (n) was sent from the trans-

mitters. If the indexing of k is not needed, the symbol t(i)(n)
(l)

=

T s(i)(n) can be used. The vector
(
t
(i)
k (n)

(l)
)H [

Φ
(l,M)
v

]−1

has

size 1×(l+1)M , and this vector is named the receiver-signal vector.
Let the operator Re {·} denote the real part of the scalar it is

applied to. It is assumed that the system is synchronized such that
the noise-free eye diagrams here is in the middle of their analogue
counterparts. The positive part of the ith noise-free eye diagram at
time instant n is defined as the real part of the noise-free signal at
the output of the receiver filter Ri(z) at time n when the desired
signal is di(n) = si(n − δ) = +1. From (5) and Figure 2, it can
be seen that Re

{
Ri T s(i)(n)

}
is the real part of the output of

the ith FIR MISO receiver filter Ri(z) at time n when the vector
given by s(i)(n) was transmitted with no channel noise. At time n,
the ith FIR receiver filter Ri is trying to estimate the value of the
desired signal di(n) = si(n − δ). In the vector s(i)(n), the value
corresponding to si(n−δ) is equal to +1 due to the definition of the
vector s(i)(n). The positive part of the ith noise-free eye diagram
can be expressed as

Re
{
Ri T s

(i)
k (n)

}
=Re

{〈
Ri ,

(
t
(i)
k (n)

(l)
)H[

Φ(l,M)
v

]−1
〉

Φ
(l,M)
v

}
,

(9)
where i ∈ {0, 1, . . . , N−1} and k ∈ {0, 1, . . . , K−1}. The receiver
inner product 〈f0, f 1〉Φ(l,M)

v
� f 0Φ

(l,M)
v fH

1 is used here. If the
system has an open noise-free eye diagram at the output of the ith
receiver filter, then the expressions in (9) must be positive for all
k ∈ {0, 1, . . . , K − 1}.

G. Definitions

Definition 1: Let user number i have spreading code of length
M given by W i and let the M × M channel block transfer matri-
ces Ci(z) be given. These channels are said to be (l, δ) linear FIR
equalizable if there exists N linear FIR MISO receiver filters Ri(z)
with size 1 × M and order l, see (3), such that all the N noise-free
eye diagrams are open when the delay through the system is δ.

Remark 1: Note that there exist channels that are not linear FIR
equalizable for (l, δ) = (0, 0), but the same channels might be linear
FIR equalizable for larger values of l or δ. There exist scalar channels
that are not linear FIR equalizable for some values of N and M , but
if these values are sufficiently increased, then the communication
system becomes linear FIR equalizable.

Definition 2: The ith receiver-signal set Ri is defined as:

Ri =

{
K−1∑
k=0

gk

(
t
(i)
k (n)

(l)
)H [

Φ(l,M)
v

]−1

∣∣∣∣∣ gk > 0

}
. (10)

For linear FIR equalizable channels, it is seen from the equality in
(9) that there exists at least one receiver Ri that has a positive real
part of the receiver inner product with all the receiver-signal vectors.
Since the receiver-signal vectors generate the set Ri, see (10), the
set Ri is a cone when the channels are linear FIR equalizable. The
set in (10) are called receiver-cone, when the channels are linear FIR
equalizable.

In general, for linear FIR equalizable channels, only subsets of
the receiver-signal cones will result in open noise-free eye diagrams.
From (9), it is seen that for linear FIR equalizable channels, the ith
noise-free eye diagram is open if the following condition is satisfied:
The vector Ri lies inside the subset of Ri that has a positive real
part of receiver inner product with all the receiver-signal vectors.

H. Exact Expression of the BER

The total average BER for the system given in Figure 2 can be
expressed as:

BER =
1

N

N−1∑
i=0

BERi . (11)

BERi is the BER of vector component number i of the output
vector š(n), and it can be expressed as

BERi =Pr{ši(n) �=si(n−δ)}=Pr{Re {ŝi(n)} si(n−δ)<0}
=Pr

{
Re

{
Ri T s(n) + Ri v(n)(l)

}
si(n − δ) < 0

}
=Pr

{
Re

{
Ri T s(i)(n) + Ri v(n)(l)si(n − δ)

}
< 0

}
=Pr

{
−Re

{
Ri v(n)(l)si(n − δ)

}
> Re

{
Ri t(i)(n)

(l)
}}

=E
[
Pr

{
−Re

{
Ri v(n)(l)si(n − δ)

}
> Re

{
Ri t(i)(n)

(l)
}∣∣∣ s(n)

}]
, (12)

where Pr{·} is the probability operator and Pr{A} = E[Pr{A|B}]
with the expected value taken with respect to B. In (12), si(n−δ) =

(s(n))(l+2)i+δ and the definition of t
(i)
k (n)

(l)
were used. In order to

simplify further the expression above, it is important to realize that
the left hand side of the last inequality is a real Gaussian stochastic
variable with mean and variance

E
[
−Re

{
Ri v(n)(l)si(n − δ)

}]
= 0, (13)

E
[
Re2

{
Ri v(n)(l)si(n − δ)

}]
=

1

2
‖Ri ‖2

Φ
(l,M)
v

, (14)

where Re2{·} denotes the squared value of the real part of the
argument. By utilizing the distribution of the vectors s(n) and
s
(i)
k (n), the definition of the Q-function together with the results

from (13) and (14), it can be shown that (12) can be rewritten as

BERi = E

⎡
⎣Q

⎛
⎝

√
2Re

{
Ri t(i)(n)

(l)
}

‖Ri ‖
Φ

(l,M)
v

⎞
⎠
⎤
⎦

=
1

K

K−1∑
k=0

Q

⎛
⎜⎜⎜⎜⎝
√

2Re

{〈
Ri ,

(
t
(i)
k (n)

(l)
)H[

Φ
(l,M)
v

]−1
〉

Φ
(l,M)
v

}

‖Ri ‖
Φ

(l,M)
v

⎞
⎟⎟⎟⎟⎠ ,

(15)
where (9) was used, and where K is given by (8). The expression
for BER is an extension of (3) in [5] to include complex variables
and for the case where l > 0. For l = 0, the expression is also in
accordance with (20) in [9], although the expression in [9] contains



twice as many terms for each sum over k. The reason is that in [9], it
has not been considered that the vectors s

(i)
k (n) contain +1 in vector

component number (l+2)i+δ, independently of k. Experiments show
that there is an excellent match between the theoretical performance
given in (11) and performance achieved by Monte Carlo simulations.

I. Receiver Filter Normalization and Problem Formulation

From (11) and (15), it can be deduced that the exact value of
the BER is independent of the receiver inner product norm of the
vectors Ri Therefore, there is no loss of optimality by choosing

‖Ri ‖2

Φ
(l,M)
v

= Ri Φ(l,M)
v Ri

H = 1. (16)

The robust receiver design problem can be formulated as:

Problem 1: min
{R0(z),R1(z),··· ,RN−1(z)}

BER.

III. MINIMUM BER FIR RECEIVER DESIGN

A. Properties of the Minimum BER Receiver Filters

Lemma 1: If the channels are linear FIR equalizable, then the
minimum BER ith receiver Ri lies in Ri.

Proof: See [10]
Proposition 1: If BER < 1

2K
, then all the N noise-free eye

diagrams are open.
Proof: See [10].

Proposition 2: Assume that the channels are linear FIR equaliz-
able. If the receiver FIR MISO filters are constrained to belong to
the sets that have open noise-free eye diagrams and each of the
receiver filters Ri satisfies (20), then the optimized receiver is a
global minimum.

Proof: See [10].

B. Numerical Optimization Algorithm

The necessary conditions for optimality of the ith receiver filter
can be expressed as: ∂

∂Ri
∗ BER = 01×(l+1)M . The following two

conjugate derivatives will be useful
∂

∂Ri
∗ Re

{
Ri t

(i)
k (n)

(l)
}

=
1

2

(
t
(i)
k (n)

(l)
)H

, (17)

∂

∂Ri
∗

1

‖Ri ‖
Φ

(l,M)
v

=
−1

2 ‖Ri ‖3

Φ
(l,M)
v

Ri Φ(l,M)
v . (18)

By means of (11), (15), and the definition of the Q-function, the
necessary conditions for optimality can be reformulated as:

K−1∑
k=0

e

−
Re2

{
Ri t

(i)
k

(n)
(l)

}

‖Ri ‖2

Φ
(l,M)
v

{
Re

{
Ri t

(i)
k (n)

(l)
} ∂

∂Ri
∗ ‖Ri ‖−1

Φ
(l,M)
v

+
1

‖Ri ‖
Φ

(l,M)
v

∂

∂Ri
∗ Re

{
Ri t

(i)
k (n)

(l)
}}

= 01×(l+1)M . (19)

By introducing the results from (17) and (18) into (19) and using the
normalization in (16), then (19) can be rewritten as:

Ri =

K−1∑
k1=0

e
−Re2

{
Ri t

(i)
k1

(n)
(l)

} (
t
(i)
k1

(n)
(l)

)H [
Φ(l,M)

v

]−1

K−1∑
k0=0

e
−Re2

{
Ri t

(i)
k0

(n)
(l)

}
Re

{
Ri t

(i)
k0

(n)
(l)

} .

(20)
The following result now follows immediately.

Theorem 1: Assume that the channels are linear FIR equalizable
and that the normalization in (16) is used, then the optimal receiver
filter number i satisfies (20) and it lies in Ri.
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Fig. 3. BER versus Eb/N0 performances of the minimum MSE DS-CDMA
system (· · · ◦ · · · ) and the proposed minimum BER DS-CDMA system (−×
−) for different values of receiver filter order l ∈ {0, 1, 2}, when M = 7,
L = 5, and N = 3. When l increases, then the performance curves move
downward.

(20) reduces to (12) in [11] when N = M = 1, the matrix Φ
(l,M)
v

is proportional to the identity matrix, and only real filters and signals
are present.

The steepest decent method is used in the optimization of the ith
FIR receiver filter. In [10], it is shown that the following result holds

∂

∂Ri
∗ BER =

−1

2
√

πKN

K−1∑
k=0

e
−Re2

{
Ri t

(i)
k

(n)
(l)

}

×
{(

t
(i)
k (n)

(l)
)H

− Re
{

Ri t
(i)
k (n)

(l)
}

Ri Φ(l,M)
v

}
, (21)

when the normalization in (16) is used. The steepest descent method
is used in the CDMA receiver optimization. The whole system can be
optimized for the different possible values of the delay δ. The initial
value for the FIR MISO receiver filter coefficients should be chosen
appropriately. One possibility is to use filter coefficients from filters
of the same order, where the filters are optimized according to the
minimum MSE criterion, see Subsection II-E. When the minimum
BER receiver FIR MISO filters have been found for a certain channel
condition Eb/N0, these values can be used as initial values for other
channel conditions which are close to the one already optimized. The
algorithm is guaranteed to converge at least to a local minimum.

C. Low Eb/N0 Regime

In [10], it is shown that the minimum BER receiver filters will
approach the following result as Eb/N0 → 0+:

Ri = β
(
e(l+2)i+δ

)T
T H

[
Φ(l,M)

v

]−1

, (22)

where β is a positive constant chosen such that (16) is satisfied. The
result in (22) is an extension to the FIR MISO case of the average
matched receiver filter that is found in [12]. From (22), it follows
that the optimal receiver filter number i for bad channel conditions
lies in the ith receiver-signal set Ri given by (10). If the channel
noise is very high, it is seen from (7), that minimum MSE receiver
number i is proportional to the result in (22).

IV. RESULTS AND COMPARISONS

Here, comparisons are made against the minimum MSE receiver
filters given in Subsection II-E, which are also called Wiener filters.

Let the (L + 1) × 1 vector hi � [ci(0), ci(1), · · · , ci(L)]T ,
where hH

i hi = 1. The channel impulse response coefficients ci(k)
were taken from a white complex Gaussian random process. Real
normalized Gold codes [13] were used as spreading codes W i, the
delay was chosen as δ =

⌊
l+1
2

⌋
, and v(n) is white.
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Fig. 4. BER versus MM performances of the minimum MSE DS-CDMA
system (· · ·◦· · · ) and the proposed DS-CDMA system (−×−), when l = 0,
M = 7, L = 5, N = 5, and Eb/N0 = 20 dB in all cases.

Figure 3 shows the BER versus Eb/N0 performances of the
minimum MSE and the proposed minimum BER systems when
M = 7, L = 5, and N = 3 and l ∈ {0, 1, 2}. When l increases, the
performance of the two systems improves. From Figure 3, it is seen
that a significant improvement can be achieved by increasing l from
0 to 1 in this example, however, there is only a small improvement
in performance when l increases from 1 to 2.

A. Effect of Channel Estimation Errors

It was assumed that the receiver knows exactly all the channel co-
efficients. This is not realistic in all practical situations. Assume that
the receiver is optimized for the channel transfer functions Ci(z), but
because of channel estimation errors the actual coefficients used when
the signal is transmitted is Ĉi(z), where the transfer functions Ci(z)
and Ĉi(z) have the same order and size. Let ĥi contain the L + 1
scalar channel coefficients corresponding to Ĉ i(z). As a measure of
the mismatch (MM) between the actual channels ĥi and the channels
used in the optimization hi, MM = 1/N

∑N−1
i=0 ‖ĥi−hi‖2 is used.

It is assumed that the mismatch is equal for all the N channels.
When interpreting the size of MM it is important to remember that
hH

i hi = 1. Figure 4 shows the BER versus MM performances of
the minimum MSE and minimum BER systems. Since the value of
MM depends on the realization of ĥi, Monte Carlo simulations were
used. 10000 realizations of the actual channels ĥi were generated for
each each value of MM and then the BER, in (11), was averaged for
all these realizations. Figure 4 gives an indication of the sensitivity
of the minimum MSE and minimum BER receiver to errors in the
channel coefficients.

B. Near-Far Resistance Effect

Let ui(n) be the noise-free M × 1 vector time-series that is
the output of channel Ci(z), see Figure 2. Let Pi be the re-
ceived signal power from user number i. Pi can be found as:
Pi = E

[‖ui(n)‖2
]

= Tr
{
C i

[
I2 ⊗ W iW

H
i

]
C i

H
}

. Let the
channel impulse responses be scaled such that all Pi = P for
i ∈ {1, 2, . . . , N − 1}. The received signal power P0 from user
number 0 can be different than the other received powers. The near-far
ratio (NFR) in dB is defined as: NFR = 10 log10

P0
P

. In Figure 5, the
BER0 versus NFR performance is shown for the DS-CDMA systems
having minimum MSE receiver and minimum BER receiver filters.
From (11) and (15), it can be deduced that receiver filter number i
is chosen such that BERi is minimized. Since the near-far resistance
is measured as BER0 versus NFR, the proposed system has optimal
near-far resistance among linear FIR receivers following the block
model in Figure 2.
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Fig. 5. BER0 versus NFR performances of the minimum MSE DS-CDMA
system (· · · ◦ · · · ) and the proposed minimum BER DS-CDMA system (−×
−), when l = 0, M = 7, L = 5, N = 5, and Eb/N0 = 20 dB in all cases.

V. CONCLUSIONS

Exact BER were derived for a DS-CDMA system. Based on this
expression, a framework was developed for finding linear minimum
BER FIR receiver filters. A numerical iterative optimization algorithm
was proposed that is able to converge to a locally optimal solution.
The proposed receiver filters can be found through a numerical op-
timization procedure. Numerical examples showed that the proposed
minimum BER receivers can perform significantly better than the
minimum MSE receivers with the same filter order. Several properties
of the minimum FIR BER filters were also identified. Note finally
that the results can be also extended to higher order modulations.
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